Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
Med Eng Phys. 2011 Oct;33(8):1008-16. doi: 10.1016/j.medengphy.2011.04.003. Epub 2011 May 19.
Wave propagation models of blood flow and blood pressure in arteries play an important role in cardiovascular research. For application of these models in patient-specific simulations a number of model parameters, that are inherently subject to uncertainties, are required. The goal of this study is to identify with a global sensitivity analysis the model parameters that influence the output the most. The improvement of the measurement accuracy of these parameters has largest consequences for the output statistics. A patient specific model is set up for the major arteries of the arm. In a Monte-Carlo study, 10 model parameters and the input blood volume flow (BVF) waveform are varied randomly within their uncertainty ranges over 3000 runs. The sensitivity in the output for each system parameter was evaluated with the linear Pearson and ranked Spearman correlation coefficients. The results show that model parameter and input BVF uncertainties induce large variations in output variables and that most output variables are significantly influenced by more than one system parameter. Overall, the Young's modulus appears to have the largest influence and arterial length the smallest. Only small differences were obtained between Spearman's and Pearson's tests, suggesting that a high monotonic association given by Spearman's test is associated with a high linear corelation between the inputs and output parameters given by Pearson's test.
动脉中血流和血压的波动传播模型在心血管研究中起着重要作用。为了将这些模型应用于特定于患者的模拟中,需要许多固有存在不确定性的模型参数。本研究的目的是通过全局敏感性分析来确定对输出影响最大的模型参数。这些参数的测量精度的提高对输出统计数据有最大的影响。为手臂的主要动脉建立了一个特定于患者的模型。在蒙特卡罗研究中,在 3000 多次运行中,在其不确定性范围内随机改变 10 个模型参数和输入血流体积流量(BVF)波形。使用线性 Pearson 和排名 Spearman 相关系数评估每个系统参数对输出的敏感性。结果表明,模型参数和输入 BVF 的不确定性会导致输出变量的较大变化,并且大多数输出变量会受到多个系统参数的显著影响。总体而言,杨氏模量的影响最大,而动脉长度的影响最小。Spearman 检验和 Pearson 检验之间的差异很小,这表明 Spearman 检验中给出的高单调关联与 Pearson 检验中输入和输出参数之间的高线性相关相关联。