Suppr超能文献

心血管血液动力学降阶模型中的反问题:数据同化与心率变异性方面

Inverse problems in reduced order models of cardiovascular haemodynamics: aspects of data assimilation and heart rate variability.

作者信息

Pant Sanjay, Corsini Chiara, Baker Catriona, Hsia Tain-Yen, Pennati Giancarlo, Vignon-Clementel Irene E

机构信息

Inria Paris & Sorbonne Universités UPMC Paris 6, Laboratoire Jacques-Louis Lions, Paris, France.

Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milan, Italy.

出版信息

J R Soc Interface. 2017 Jan;14(126). doi: 10.1098/rsif.2016.0513.

Abstract

Inverse problems in cardiovascular modelling have become increasingly important to assess each patient individually. These problems entail estimation of patient-specific model parameters from uncertain measurements acquired in the clinic. In recent years, the method of data assimilation, especially the unscented Kalman filter, has gained popularity to address computational efficiency and uncertainty consideration in such problems. This work highlights and presents solutions to several challenges of this method pertinent to models of cardiovascular haemodynamics. These include methods to (i) avoid ill-conditioning of the covariance matrix, (ii) handle a variety of measurement types, (iii) include a variety of prior knowledge in the method, and (iv) incorporate measurements acquired at different heart rates, a common situation in the clinic where the patient state differs according to the clinical situation. Results are presented for two patient-specific cases of congenital heart disease. To illustrate and validate data assimilation with measurements at different heart rates, the results are presented on a synthetic dataset and on a patient-specific case with heart valve regurgitation. It is shown that the new method significantly improves the agreement between model predictions and measurements. The developed methods can be readily applied to other pathophysiologies and extended to dynamical systems which exhibit different responses under different sets of known parameters or different sets of inputs (such as forcing/excitation frequencies).

摘要

在心血管建模中,反问题对于个体患者评估变得越来越重要。这些问题需要根据在临床中获取的不确定测量值来估计患者特定的模型参数。近年来,数据同化方法,尤其是无迹卡尔曼滤波器,在解决此类问题的计算效率和不确定性考虑方面受到了广泛关注。这项工作突出并提出了解决该方法在心血管血流动力学模型中面临的几个挑战的方案。这些挑战包括:(i)避免协方差矩阵的病态;(ii)处理各种测量类型;(iii)在方法中纳入各种先验知识;(iv)纳入在不同心率下获取的测量值,这在临床中是常见情况,即患者状态会根据临床情况而有所不同。给出了两个先天性心脏病患者特定病例的结果。为了用不同心率下的测量值说明和验证数据同化,结果展示在一个合成数据集和一个有心脏瓣膜反流的患者特定病例上。结果表明,新方法显著提高了模型预测与测量值之间的一致性。所开发的方法可以很容易地应用于其他病理生理学情况,并扩展到在不同已知参数集或不同输入集(如强迫/激励频率)下表现出不同响应的动态系统。

相似文献

8
Integrating multi-fidelity blood flow data with reduced-order data assimilation.整合多保真度血流数据与降阶数据同化。
Comput Biol Med. 2021 Aug;135:104566. doi: 10.1016/j.compbiomed.2021.104566. Epub 2021 Jun 14.
10
Data-driven cardiovascular flow modelling: examples and opportunities.基于数据的心血管流建模:实例与机遇。
J R Soc Interface. 2021 Feb;18(175):20200802. doi: 10.1098/rsif.2020.0802. Epub 2021 Feb 10.

引用本文的文献

4
Inverse problems in blood flow modeling: A review.血流建模中的反问题:综述。
Int J Numer Method Biomed Eng. 2022 Aug;38(8):e3613. doi: 10.1002/cnm.3613. Epub 2022 May 24.

本文引用的文献

7
Multiscale modelling of single-ventricle hearts for clinical decision support: a Leducq Transatlantic Network of Excellence.
Eur J Cardiothorac Surg. 2016 Feb;49(2):365-8. doi: 10.1093/ejcts/ezv368. Epub 2015 Oct 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验