Department of Genetics and Biotechnology, Aarhus University, Forsøgsvej 1, DK-4200 Slagelse, Denmark.
J Proteomics. 2011 Oct 19;74(11):2228-42. doi: 10.1016/j.jprot.2011.05.004. Epub 2011 May 11.
Proteins can become oxidatively modified in many different ways, either by direct oxidation of amino acid side chains and protein backbone or indirectly by conjugation with oxidation products of polyunsaturated fatty acids and carbohydrates. While reversible oxidative modifications are thought to be relevant in physiological processes, irreversible oxidative modifications are known to contribute to cellular damage and disease. The most well-studied irreversible protein oxidation is carbonylation. In this work we first examine how protein carbonylation occurs via metal-catalyzed oxidation (MCO) in vivo and in vitro with an emphasis on cellular metal ion homeostasis and metal binding. We then review proteomic methods currently used for identifying carbonylated proteins and their sites of modification. Finally, we discuss the identified carbonylated proteins and the pattern of carbonylation sites in relation to cellular metabolism using the mitochondrion as a case story.
蛋白质可以通过多种不同的方式发生氧化修饰,既可以通过氨基酸侧链和蛋白质主链的直接氧化,也可以通过与多不饱和脂肪酸和碳水化合物的氧化产物的间接结合。虽然可逆氧化修饰被认为与生理过程有关,但不可逆氧化修饰已知会导致细胞损伤和疾病。研究最广泛的不可逆蛋白质氧化是羰基化。在这项工作中,我们首先研究了蛋白质羰基化如何通过体内和体外的金属催化氧化(MCO)发生,并重点关注细胞金属离子稳态和金属结合。然后,我们回顾了目前用于鉴定羰基化蛋白质及其修饰位点的蛋白质组学方法。最后,我们讨论了所鉴定的羰基化蛋白质以及与细胞代谢相关的羰基化位点模式,以线粒体为例。