Suppr超能文献

一种 II 型内切酶(TDE0911)的失活使得密螺旋体(Treponema denticola)ATCC 35405 能够接受未甲基化的穿梭载体。

Disruption of a type II endonuclease (TDE0911) enables Treponema denticola ATCC 35405 to accept an unmethylated shuttle vector.

机构信息

Department of Oral Biology, The State University of New York at Buffalo, Buffalo, New York 14214, USA.

出版信息

Appl Environ Microbiol. 2011 Jul;77(13):4573-8. doi: 10.1128/AEM.00417-11. Epub 2011 May 20.

Abstract

The oral spirochete Treponema denticola is associated with human periodontal disease. T. denticola ATCC 35405 and ATCC 33520 are two routinely used laboratory strains. Compared to T. denticola ATCC 33520, ATCC 35405 is more virulent but less accessible to genetic manipulations. For instance, the shuttle vectors of ATCC 33520 cannot be transformed into strain ATCC 35405. The lack of a shuttle vector has been a barrier to study the biology and virulence of T. denticola ATCC 35405. In this report, we hypothesize that T. denticola ATCC 35405 may have a unique DNA restriction-modification (R-M) system that prevents it from accepting the shuttle vectors of ATCC 33520 (e.g., the shuttle plasmid pBFC). To test this hypothesis, DNA restriction digestion, PCR, and Southern blot analyses were conducted to identify the differences between the R-M systems of these two strains. DNA restriction digestion analysis of these strains showed that only the cell extract from ATCC 35405 was able to digest pBFC. Consistently, PCR and Southern blot analyses revealed that the genome of T. denticola ATCC 35405 encodes three type II endonucleases that are absent in ATCC 33520. Among these three endonucleases, TDE0911 was predicted to cleave unmethylated double-stranded DNA and to be most likely responsible for the cleavage of unmethylated pBFC. In agreement with this prediction, the mutant of TDE0911 failed to cleave unmethylated pBFC plasmid, and it could accept the unmethylated shuttle vector. The study described here provides us with a new tool and strategy to genetically manipulate T. denticola, in particular ATCC 35405, and other strains that may carry similar endonucleases.

摘要

口腔螺旋体 Treponema denticola 与人类牙周病有关。T. denticola ATCC 35405 和 ATCC 33520 是两种常用的实验室菌株。与 T. denticola ATCC 33520 相比,ATCC 35405 更具毒力,但遗传操作较难。例如,ATCC 33520 的穿梭载体不能转化为 ATCC 35405 菌株。缺乏穿梭载体一直是研究 T. denticola ATCC 35405 的生物学和毒力的障碍。在本报告中,我们假设 T. denticola ATCC 35405 可能具有独特的 DNA 限制修饰(R-M)系统,阻止其接受 ATCC 33520 的穿梭载体(例如穿梭质粒 pBFC)。为了验证这一假设,我们进行了 DNA 限制消化、PCR 和 Southern blot 分析,以确定这两种菌株的 R-M 系统之间的差异。这些菌株的 DNA 限制消化分析表明,只有来自 ATCC 35405 的细胞提取物能够消化 pBFC。一致地,PCR 和 Southern blot 分析表明,T. denticola ATCC 35405 的基因组编码三种不存在于 ATCC 33520 中的 II 型内切酶。在这三种内切酶中,TDE0911 被预测能够切割未甲基化的双链 DNA,并且最有可能负责未甲基化的 pBFC 的切割。与这一预测一致,TDE0911 的突变体不能切割未甲基化的 pBFC 质粒,并且它可以接受未甲基化的穿梭载体。本研究为我们提供了一种新的工具和策略,用于遗传操作 T. denticola,特别是 ATCC 35405 和其他可能携带类似内切酶的菌株。

相似文献

1
Disruption of a type II endonuclease (TDE0911) enables Treponema denticola ATCC 35405 to accept an unmethylated shuttle vector.
Appl Environ Microbiol. 2011 Jul;77(13):4573-8. doi: 10.1128/AEM.00417-11. Epub 2011 May 20.
2
A Modified Shuttle Plasmid Facilitates Expression of a Flavin Mononucleotide-Based Fluorescent Protein in Treponema denticola ATCC 35405.
Appl Environ Microbiol. 2015 Sep;81(18):6496-504. doi: 10.1128/AEM.01541-15. Epub 2015 Jul 10.
5
Development of a gene transfer system in Treponema denticola by electroporation.
Oral Microbiol Immunol. 1996 Jun;11(3):161-5. doi: 10.1111/j.1399-302x.1996.tb00352.x.
6
Distribution and characterization of plasmids in oral anaerobic spirochetes.
Oral Microbiol Immunol. 1995 Feb;10(1):8-12. doi: 10.1111/j.1399-302x.1995.tb00111.x.
8
Kanamycin Resistance Cassette for Genetic Manipulation of Treponema denticola.
Appl Environ Microbiol. 2015 Jul;81(13):4329-38. doi: 10.1128/AEM.00478-15. Epub 2015 Apr 17.
9
Multiple enzymes can make hydrogen sulfide from cysteine in Treponema denticola.
Anaerobe. 2020 Aug;64:102231. doi: 10.1016/j.anaerobe.2020.102231. Epub 2020 Jun 27.
10
Immunotopological Analysis of the Major Surface Protein (Msp).
J Bacteriol. 2018 Dec 20;201(2). doi: 10.1128/JB.00528-18. Print 2019 Jan 15.

引用本文的文献

1
Emerging oral membrane proteins disorder neutrophil phosphoinositide signaling via phosphatidylinositol-4-phosphate 5-kinase.
Front Oral Health. 2025 Apr 3;6:1568983. doi: 10.3389/froh.2025.1568983. eCollection 2025.
3
Characterization of Treponema denticola Major Surface Protein (Msp) by Deletion Analysis and Advanced Molecular Modeling.
J Bacteriol. 2022 Sep 20;204(9):e0022822. doi: 10.1128/jb.00228-22. Epub 2022 Aug 1.
4
Complete Genome Sequences of Three Human Oral Treponema parvum Isolates.
Microbiol Resour Announc. 2021 Jul 8;10(27):e0039421. doi: 10.1128/MRA.00394-21.
5
Genetic Manipulations of Oral Spirochete Treponema denticola.
Methods Mol Biol. 2021;2210:15-23. doi: 10.1007/978-1-0716-0939-2_2.
6
The Role of Motility in Synergistic Biofilm Formation With .
Front Cell Infect Microbiol. 2019 Dec 18;9:432. doi: 10.3389/fcimb.2019.00432. eCollection 2019.
8
Spirochaete flagella hook proteins self-catalyse a lysinoalanine covalent crosslink for motility.
Nat Microbiol. 2016 Aug 8;1(10):16134. doi: 10.1038/nmicrobiol.2016.134.
9
pyrF as a Counterselectable Marker for Unmarked Genetic Manipulations in Treponema denticola.
Appl Environ Microbiol. 2015 Dec 18;82(4):1346-52. doi: 10.1128/AEM.03704-15. Print 2016 Feb 15.
10
Premethylation of foreign DNA improves integrative transformation efficiency in Synechocystis sp. strain PCC 6803.
Appl Environ Microbiol. 2015 Dec;81(24):8500-6. doi: 10.1128/AEM.02575-15. Epub 2015 Oct 9.

本文引用的文献

1
A novel gene inactivation system reveals altered periplasmic flagellar orientation in a Borrelia burgdorferi fliL mutant.
J Bacteriol. 2011 Jul;193(13):3324-31. doi: 10.1128/JB.00202-11. Epub 2011 Mar 25.
2
Defining the plasmid-borne restriction-modification systems of the Lyme disease spirochete Borrelia burgdorferi.
J Bacteriol. 2011 Mar;193(5):1161-71. doi: 10.1128/JB.01176-10. Epub 2010 Dec 30.
3
Virulence factors of the oral spirochete Treponema denticola.
J Dent Res. 2011 Jun;90(6):691-703. doi: 10.1177/0022034510385242. Epub 2010 Oct 12.
4
Virulence factors of Treponema denticola.
Periodontol 2000. 2010 Oct;54(1):117-35. doi: 10.1111/j.1600-0757.2009.00345.x.
5
A simplified erythromycin resistance cassette for Treponema denticola mutagenesis.
J Microbiol Methods. 2010 Oct;83(1):66-8. doi: 10.1016/j.mimet.2010.07.020. Epub 2010 Aug 4.
6
Periodontitis: a polymicrobial disruption of host homeostasis.
Nat Rev Microbiol. 2010 Jul;8(7):481-90. doi: 10.1038/nrmicro2337.
7
An efficient method for enumerating oral spirochetes using flow cytometry.
J Microbiol Methods. 2010 Feb;80(2):123-8. doi: 10.1016/j.mimet.2009.11.006. Epub 2009 Nov 22.
8
REBASE--a database for DNA restriction and modification: enzymes, genes and genomes.
Nucleic Acids Res. 2010 Jan;38(Database issue):D234-6. doi: 10.1093/nar/gkp874. Epub 2009 Oct 21.
9
Genetic manipulation of Treponema denticola.
Curr Protoc Microbiol. 2005 Jul;Chapter 12:Unit 12B.2. doi: 10.1002/9780471729259.mc12b02s00.
10
Development of a transposon mutagenesis system in the oral spirochete Treponema denticola.
Appl Environ Microbiol. 2008 Oct;74(20):6461-4. doi: 10.1128/AEM.01424-08. Epub 2008 Aug 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验