Suppr超能文献

曲面估计、变量选择与非参数最优属性

Surface Estimation, Variable Selection, and the Nonparametric Oracle Property.

作者信息

Storlie Curtis B, Bondell Howard D, Reich Brian J, Zhang Hao Helen

出版信息

Stat Sin. 2011 Apr;21(2):679-705. doi: 10.5705/ss.2011.030a.

Abstract

Variable selection for multivariate nonparametric regression is an important, yet challenging, problem due, in part, to the infinite dimensionality of the function space. An ideal selection procedure should be automatic, stable, easy to use, and have desirable asymptotic properties. In particular, we define a selection procedure to be nonparametric oracle (np-oracle) if it consistently selects the correct subset of predictors and at the same time estimates the smooth surface at the optimal nonparametric rate, as the sample size goes to infinity. In this paper, we propose a model selection procedure for nonparametric models, and explore the conditions under which the new method enjoys the aforementioned properties. Developed in the framework of smoothing spline ANOVA, our estimator is obtained via solving a regularization problem with a novel adaptive penalty on the sum of functional component norms. Theoretical properties of the new estimator are established. Additionally, numerous simulated and real examples further demonstrate that the new approach substantially outperforms other existing methods in the finite sample setting.

摘要

多元非参数回归中的变量选择是一个重要但具有挑战性的问题,部分原因在于函数空间的无限维特性。一个理想的选择过程应该是自动的、稳定的、易于使用的,并且具有理想的渐近性质。特别地,如果一个选择过程在样本量趋于无穷时能够一致地选择正确的预测变量子集,同时以最优的非参数速率估计光滑曲面,我们就将其定义为非参数神谕(np - 神谕)。在本文中,我们提出了一种非参数模型的模型选择过程,并探讨了新方法具有上述性质的条件。我们的估计器是在平滑样条方差分析的框架下开发的,通过求解一个对函数分量范数之和施加新颖自适应惩罚的正则化问题得到。建立了新估计器的理论性质。此外,大量的模拟和实际例子进一步表明,在有限样本情况下,新方法显著优于其他现有方法。

相似文献

1
Surface Estimation, Variable Selection, and the Nonparametric Oracle Property.
Stat Sin. 2011 Apr;21(2):679-705. doi: 10.5705/ss.2011.030a.
2
Sparse and Efficient Estimation for Partial Spline Models with Increasing Dimension.
Ann Inst Stat Math. 2015 Feb 1;67(1):93-127. doi: 10.1007/s10463-013-0440-y.
3
Automatic Model Selection for Partially Linear Models.
J Multivar Anal. 2009 Oct 1;100(9):2100-2111. doi: 10.1016/j.jmva.2009.06.009.
4
PENALIZED VARIABLE SELECTION PROCEDURE FOR COX MODELS WITH SEMIPARAMETRIC RELATIVE RISK.
Ann Stat. 2010 Aug 1;38(4):2092-2117. doi: 10.1214/09-AOS780.
5
Variable Selection in Nonparametric Varying-Coefficient Models for Analysis of Repeated Measurements.
J Am Stat Assoc. 2008 Dec 1;103(484):1556-1569. doi: 10.1198/016214508000000788.
6
Estimation and model selection for nonparametric function-on-function regression.
J Comput Graph Stat. 2022;31(3):835-845. doi: 10.1080/10618600.2022.2037434. Epub 2022 Mar 28.
7
Robust signed-rank estimation and variable selection for semi-parametric additive partial linear models.
J Appl Stat. 2019 Nov 27;47(10):1794-1819. doi: 10.1080/02664763.2019.1695759. eCollection 2020.
8
ADAPTIVE ROBUST VARIABLE SELECTION.
Ann Stat. 2014 Feb 1;42(1):324-351. doi: 10.1214/13-AOS1191.
9
A general framework of nonparametric feature selection in high-dimensional data.
Biometrics. 2023 Jun;79(2):951-963. doi: 10.1111/biom.13664. Epub 2022 Apr 7.
10
Robust learning for optimal treatment decision with NP-dimensionality.
Electron J Stat. 2016;10:2894-2921. doi: 10.1214/16-EJS1178. Epub 2016 Oct 13.

引用本文的文献

1
Scalable Empirical Bayes Inference and Bayesian Sensitivity Analysis.
Stat Sci. 2024 Nov;39(4):601-622. doi: 10.1214/24-sts936. Epub 2024 Oct 30.
2
Detection of Interaction Effects in a Nonparametric Concurrent Regression Model.
Entropy (Basel). 2023 Sep 12;25(9):1327. doi: 10.3390/e25091327.
6
Variable Selection in Kernel Regression Using Measurement Error Selection Likelihoods.
J Am Stat Assoc. 2017;112(520):1587-1597. doi: 10.1080/01621459.2016.1222287. Epub 2017 Jul 19.
8
Linear or Nonlinear? Automatic Structure Discovery for Partially Linear Models.
J Am Stat Assoc. 2011 Sep 1;106(495):1099-1112. doi: 10.1198/jasa.2011.tm10281.
9
Buckley-James boosting for survival analysis with high-dimensional biomarker data.
Stat Appl Genet Mol Biol. 2010;9(1):Article24. doi: 10.2202/1544-6115.1550. Epub 2010 Jun 8.

本文引用的文献

1
Generalized additive models for medical research.
Stat Methods Med Res. 1995 Sep;4(3):187-96. doi: 10.1177/096228029500400302.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验