Lin Chen-Yen, Bondell Howard, Zhang Hao Helen, Zou Hui
Eli Lilly and Company, IN 46285.
Department of Statistics, North Carolina State University, NC 27695-8203.
Stat. 2013;2(1):255-268. doi: 10.1002/sta4.33.
Quantile regression provides a more thorough view of the effect of covariates on a response. Nonparametric quantile regression has become a viable alternative to avoid restrictive parametric assumption. The problem of variable selection for quantile regression is challenging, since important variables can influence various quantiles in different ways. We tackle the problem via regularization in the context of smoothing spline ANOVA models. The proposed sparse nonparametric quantile regression (SNQR) can identify important variables and provide flexible estimates for quantiles. Our numerical study suggests the promising performance of the new procedure in variable selection and function estimation. Supplementary materials for this article are available online.
分位数回归提供了协变量对响应变量影响的更全面视角。非参数分位数回归已成为避免严格参数假设的可行替代方法。分位数回归的变量选择问题具有挑战性,因为重要变量可能以不同方式影响不同分位数。我们在平滑样条方差分析模型的背景下通过正则化来解决这个问题。所提出的稀疏非参数分位数回归(SNQR)可以识别重要变量并为分位数提供灵活估计。我们的数值研究表明新方法在变量选择和函数估计方面具有良好的性能。本文的补充材料可在线获取。