Suppr超能文献

相似文献

1
Buckley-James boosting for survival analysis with high-dimensional biomarker data.
Stat Appl Genet Mol Biol. 2010;9(1):Article24. doi: 10.2202/1544-6115.1550. Epub 2010 Jun 8.
2
Doubly penalized buckley-james method for survival data with high-dimensional covariates.
Biometrics. 2008 Mar;64(1):132-40. doi: 10.1111/j.1541-0420.2007.00877.x. Epub 2007 Aug 3.
3
Regularized Buckley-James method for right-censored outcomes with block-missing multimodal covariates.
Stat (Int Stat Inst). 2022 Dec;11(1). doi: 10.1002/sta4.515. Epub 2022 Oct 13.
4
Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data.
Bioinformatics. 2005 Jul 1;21(13):3001-8. doi: 10.1093/bioinformatics/bti422. Epub 2005 Apr 6.
5
Flexible boosting of accelerated failure time models.
BMC Bioinformatics. 2008 Jun 6;9:269. doi: 10.1186/1471-2105-9-269.
6
Boosting method for nonlinear transformation models with censored survival data.
Biostatistics. 2008 Oct;9(4):658-67. doi: 10.1093/biostatistics/kxn005. Epub 2008 Mar 15.
7
Variable selection for accelerated lifetime models with synthesized estimation techniques.
Stat Methods Med Res. 2019 Mar;28(3):937-952. doi: 10.1177/0962280217739522. Epub 2017 Nov 9.
8
Robust estimation and variable selection for the accelerated failure time model.
Stat Med. 2021 Sep 10;40(20):4473-4491. doi: 10.1002/sim.9042. Epub 2021 May 24.
9
Survival analysis with high-dimensional covariates: an application in microarray studies.
Stat Appl Genet Mol Biol. 2009;8(1):Article 14. doi: 10.2202/1544-6115.1423. Epub 2009 Feb 11.
10
Boosting proportional hazards models using smoothing splines, with applications to high-dimensional microarray data.
Bioinformatics. 2005 May 15;21(10):2403-9. doi: 10.1093/bioinformatics/bti324. Epub 2005 Feb 15.

引用本文的文献

2
Regularized Buckley-James method for right-censored outcomes with block-missing multimodal covariates.
Stat (Int Stat Inst). 2022 Dec;11(1). doi: 10.1002/sta4.515. Epub 2022 Oct 13.
3
eBreCaP: extreme learning-based model for breast cancer survival prediction.
IET Syst Biol. 2020 Jun;14(3):160-169. doi: 10.1049/iet-syb.2019.0087.
4
Empirical Likelihood for Censored Linear Regression and Variable Selection.
Scand Stat Theory Appl. 2015 Sep;42(3):798-812. doi: 10.1111/sjos.12137. Epub 2015 Jan 27.
5
A Selective Review on Random Survival Forests for High Dimensional Data.
Quant Biosci. 2017;36(2):85-96. doi: 10.22283/qbs.2017.36.2.85.
6
Lasso regularization for left-censored Gaussian outcome and high-dimensional predictors.
BMC Med Res Methodol. 2018 Dec 4;18(1):159. doi: 10.1186/s12874-018-0609-4.
7
Sparse boosting for high-dimensional survival data with varying coefficients.
Stat Med. 2018 Feb 28;37(5):789-800. doi: 10.1002/sim.7544. Epub 2017 Nov 19.
8
Random rotation survival forest for high dimensional censored data.
Springerplus. 2016 Aug 26;5(1):1425. doi: 10.1186/s40064-016-3113-5. eCollection 2016.

本文引用的文献

1
Surface Estimation, Variable Selection, and the Nonparametric Oracle Property.
Stat Sin. 2011 Apr;21(2):679-705. doi: 10.5705/ss.2011.030a.
2
3
Array-based DNA methylation profiling of primary lymphomas of the central nervous system.
BMC Cancer. 2009 Dec 21;9:455. doi: 10.1186/1471-2407-9-455.
5
Molecular outcome prediction in diffuse large-B-cell lymphoma.
N Engl J Med. 2009 Jun 25;360(26):2794-5. doi: 10.1056/NEJMc0902616.
6
Survival analysis with high-dimensional covariates: an application in microarray studies.
Stat Appl Genet Mol Biol. 2009;8(1):Article 14. doi: 10.2202/1544-6115.1423. Epub 2009 Feb 11.
7
Stromal gene signatures in large-B-cell lymphomas.
N Engl J Med. 2008 Nov 27;359(22):2313-23. doi: 10.1056/NEJMoa0802885.
8
Regularized estimation for the accelerated failure time model.
Biometrics. 2009 Jun;65(2):394-404. doi: 10.1111/j.1541-0420.2008.01074.x.
9
Flexible boosting of accelerated failure time models.
BMC Bioinformatics. 2008 Jun 6;9:269. doi: 10.1186/1471-2105-9-269.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验