Suppr超能文献

RNA 的形态转变准种:一种序列,多种功能折叠。

The shape-shifting quasispecies of RNA: one sequence, many functional folds.

机构信息

Department of Chemistry, 930 N. University Ave., University of Michigan, Ann Arbor, MI 48109-1055, USA.

出版信息

Phys Chem Chem Phys. 2011 Jun 28;13(24):11524-37. doi: 10.1039/c1cp20576e. Epub 2011 May 20.

Abstract

E Unus pluribum, or "Of One, Many", may be at the root of decoding the RNA sequence-structure-function relationship. RNAs embody the large majority of genes in higher eukaryotes and fold in a sequence-directed fashion into three-dimensional structures that perform functions conserved across all cellular life forms, ranging from regulating to executing gene expression. While it is the most important determinant of the RNA structure, the nucleotide sequence is generally not sufficient to specify a unique set of secondary and tertiary interactions due to the highly frustrated nature of RNA folding. This frustration results in folding heterogeneity, a common phenomenon wherein a chemically homogeneous population of RNA molecules folds into multiple stable structures. Often, these alternative conformations constitute misfolds, lacking the biological activity of the natively folded RNA. Intriguingly, a number of RNAs have recently been described as capable of adopting multiple distinct conformations that all perform, or contribute to, the same function. Characteristically, these conformations interconvert slowly on the experimental timescale, suggesting that they should be regarded as distinct native states. We discuss how rugged folding free energy landscapes give rise to multiple native states in the Tetrahymena Group I intron ribozyme, hairpin ribozyme, sarcin-ricin loop, ribosome, and an in vitro selected aptamer. We further describe the varying degrees to which folding heterogeneity impacts function in these RNAs, and compare and contrast this impact with that of heterogeneities found in protein folding. Embracing that one sequence can give rise to multiple native folds, we hypothesize that this phenomenon imparts adaptive advantages on any functionally evolving RNA quasispecies.

摘要

一分为多,或许是解开 RNA 序列-结构-功能关系的关键。在高等真核生物中,绝大多数基因由 RNA 体现,它们通过序列指导的方式折叠成三维结构,行使着在所有细胞生命形式中都保守的功能,从调控到执行基因表达。尽管核苷酸序列是 RNA 结构的最重要决定因素,但由于 RNA 折叠的高度受挫性质,它通常不足以指定一组独特的二级和三级相互作用。这种受挫导致了折叠异质性,这是一种常见的现象,即化学同质的 RNA 分子群体折叠成多个稳定的结构。通常情况下,这些替代构象构成了错误折叠,缺乏天然折叠 RNA 的生物学活性。有趣的是,最近有许多 RNA 被描述为能够采用多种不同的构象,所有这些构象都执行或有助于相同的功能。这些构象在实验时间尺度上缓慢转换,这表明它们应该被视为不同的天然状态。我们讨论了 Tetrahymena Group I 内含子核酶、发夹核酶、sarcin-ricin 环、核糖体和体外选择的适体中,崎岖的折叠自由能景观如何导致多个天然状态的出现。我们进一步描述了折叠异质性在这些 RNA 中对功能的影响程度,并将其与蛋白质折叠中的异质性进行了比较和对比。我们假设,一个序列可以产生多个天然折叠,这一现象赋予了任何功能进化的 RNA 准种适应性优势。

相似文献

1
The shape-shifting quasispecies of RNA: one sequence, many functional folds.
Phys Chem Chem Phys. 2011 Jun 28;13(24):11524-37. doi: 10.1039/c1cp20576e. Epub 2011 May 20.
2
Multiple native states reveal persistent ruggedness of an RNA folding landscape.
Nature. 2010 Feb 4;463(7281):681-4. doi: 10.1038/nature08717.
4
Perturbed folding kinetics of circularly permuted RNAs with altered topology.
J Mol Biol. 2003 Apr 25;328(2):385-94. doi: 10.1016/s0022-2836(03)00304-8.
6
Concerted kinetic folding of a multidomain ribozyme with a disrupted loop-receptor interaction.
J Mol Biol. 2001 Jan 5;305(1):11-21. doi: 10.1006/jmbi.2000.4253.
7
New pathways in folding of the Tetrahymena group I RNA enzyme.
J Mol Biol. 1999 Sep 3;291(5):1155-67. doi: 10.1006/jmbi.1999.3026.
9
Deletion of the P5abc peripheral element accelerates early and late folding steps of the Tetrahymena group I ribozyme.
Biochemistry. 2007 May 1;46(17):4951-61. doi: 10.1021/bi0620149. Epub 2007 Apr 10.

引用本文的文献

1
Biomolecule-Based Optical Metamaterials: Design and Applications.
Biosensors (Basel). 2022 Nov 2;12(11):962. doi: 10.3390/bios12110962.
2
Pushing the Limits of Nucleic Acid Function.
Chemistry. 2022 Dec 20;28(71):e202201737. doi: 10.1002/chem.202201737. Epub 2022 Oct 26.
3
Mutate-and-chemical-shift-fingerprint (MCSF) to characterize excited states in RNA using NMR spectroscopy.
Nat Protoc. 2021 Nov;16(11):5146-5170. doi: 10.1038/s41596-021-00606-1. Epub 2021 Oct 4.
4
Ultraspecific analyte detection by direct kinetic fingerprinting of single molecules.
Trends Analyt Chem. 2020 Feb;123. doi: 10.1016/j.trac.2019.115764. Epub 2019 Dec 4.
5
Local-to-global signal transduction at the core of a Mn sensing riboswitch.
Nat Commun. 2019 Sep 20;10(1):4304. doi: 10.1038/s41467-019-12230-5.
6
Riboswitch structure and dynamics by smFRET microscopy.
Methods Enzymol. 2014;549:343-73. doi: 10.1016/B978-0-12-801122-5.00015-5.
7
Native purification and labeling of RNA for single molecule fluorescence studies.
Methods Mol Biol. 2015;1240:63-95. doi: 10.1007/978-1-4939-1896-6_6.
8
Frustration in biomolecules.
Q Rev Biophys. 2014 Nov;47(4):285-363. doi: 10.1017/S0033583514000092. Epub 2014 Sep 16.
9
Single-molecule tools for enzymology, structural biology, systems biology and nanotechnology: an update.
Arch Toxicol. 2014 Nov;88(11):1965-85. doi: 10.1007/s00204-014-1357-9. Epub 2014 Sep 12.
10
Disparate HDV ribozyme crystal structures represent intermediates on a rugged free-energy landscape.
RNA. 2014 Jul;20(7):1112-28. doi: 10.1261/rna.044982.114. Epub 2014 May 22.

本文引用的文献

1
Metal ions: supporting actors in the playbook of small ribozymes.
Met Ions Life Sci. 2011;9:175-96. doi: 10.1039/9781849732512-00175.
2
Single-molecule study of ribosome hierarchic dynamics at the peptidyl transferase center.
Biophys J. 2010 Nov 3;99(9):3002-9. doi: 10.1016/j.bpj.2010.08.037.
3
Single-molecule analysis of Mss116-mediated group II intron folding.
Nature. 2010 Oct 21;467(7318):935-9. doi: 10.1038/nature09422. Epub 2010 Oct 13.
4
Nondenaturing purification of co-transcriptionally folded RNA avoids common folding heterogeneity.
PLoS One. 2010 Sep 23;5(9):e12953. doi: 10.1371/journal.pone.0012953.
5
Ubiquitous presence of the hammerhead ribozyme motif along the tree of life.
RNA. 2010 Oct;16(10):1943-50. doi: 10.1261/rna.2130310. Epub 2010 Aug 12.
6
Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells.
Science. 2010 Jul 30;329(5991):533-8. doi: 10.1126/science.1188308.
7
Quasispecies theory and the behavior of RNA viruses.
PLoS Pathog. 2010 Jul 22;6(7):e1001005. doi: 10.1371/journal.ppat.1001005.
8
mRNA secondary structures fold sequentially but exchange rapidly in vivo.
PLoS Biol. 2010 Feb 9;8(2):e1000307. doi: 10.1371/journal.pbio.1000307.
9
Protein-facilitated folding of group II intron ribozymes.
J Mol Biol. 2010 Apr 2;397(3):799-813. doi: 10.1016/j.jmb.2010.02.001. Epub 2010 Feb 6.
10
Multiple native states reveal persistent ruggedness of an RNA folding landscape.
Nature. 2010 Feb 4;463(7281):681-4. doi: 10.1038/nature08717.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验