Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
J Phys Chem B. 2011 Jun 30;115(25):8169-75. doi: 10.1021/jp111490w. Epub 2011 Jun 8.
Replacement of methane with carbon dioxide in hydrate has been proposed as a strategy for geologic sequestration of carbon dioxide (CO(2)) and/or production of methane (CH(4)) from natural hydrate deposits. This replacement strategy requires a better understanding of the thermodynamic characteristics of binary mixtures of CH(4) and CO(2) hydrate (CH(4)-CO(2) mixed hydrates), as well as thermophysical property changes during gas exchange. This study explores the thermal dissociation behavior and dissociation enthalpies of CH(4)-CO(2) mixed hydrates. We prepared CH(4)-CO(2) mixed hydrate samples from two different, well-defined gas mixtures. During thermal dissociation of a CH(4)-CO(2) mixed hydrate sample, gas samples from the head space were periodically collected and analyzed using gas chromatography. The changes in CH(4)-CO(2) compositions in both the vapor phase and hydrate phase during dissociation were estimated based on the gas chromatography measurements. It was found that the CO(2) concentration in the vapor phase became richer during dissociation because the initial hydrate composition contained relatively more CO(2) than the vapor phase. The composition change in the vapor phase during hydrate dissociation affected the dissociation pressure and temperature; the richer CO(2) in the vapor phase led to a lower dissociation pressure. Furthermore, the increase in CO(2) concentration in the vapor phase enriched the hydrate in CO(2). The dissociation enthalpy of the CH(4)-CO(2) mixed hydrate was computed by fitting the Clausius-Clapeyron equation to the pressure-temperature (PT) trace of a dissociation test. It was observed that the dissociation enthalpy of the CH(4)-CO(2) mixed hydrate lays between the limiting values of pure CH(4) hydrate and CO(2) hydrate, increasing with the CO(2) fraction in the hydrate phase.
用二氧化碳替代甲烷生成水合物,被提议作为一种策略,用于地质封存二氧化碳(CO2)和/或从天然水合物矿床中生产甲烷(CH4)。这种替代策略需要更好地了解 CH4-CO2 水合物(CH4-CO2 混合水合物)二元混合物的热力学特性,以及气体交换过程中热物理性质的变化。本研究探讨了 CH4-CO2 混合水合物的热分解行为和分解焓。我们用两种不同的、定义明确的气体混合物制备了 CH4-CO2 混合水合物样品。在 CH4-CO2 混合水合物样品的热分解过程中,周期性地从顶部空间采集气体样品,并使用气相色谱仪进行分析。根据气相色谱测量结果,估计了在分解过程中气相和水合物相中的 CH4-CO2 组成的变化。结果发现,由于初始水合物组成中相对富含 CO2,所以在分解过程中气相中的 CO2 浓度变得更丰富。水合物分解过程中气相组成的变化影响了分解压力和温度;气相中更丰富的 CO2 导致更低的分解压力。此外,气相中 CO2 浓度的增加使水合物富化 CO2。通过将克劳修斯-克拉佩龙方程拟合到分解测试的压力-温度(PT)轨迹,计算出了 CH4-CO2 混合水合物的分解焓。观察到 CH4-CO2 混合水合物的分解焓介于纯 CH4 水合物和 CO2 水合物的极限值之间,随着水合物相中 CO2 分数的增加而增加。