Suppr超能文献

开发一种用于预测接受放化疗的肺癌患者急性食管炎的多组分预测模型。

Development of a multicomponent prediction model for acute esophagitis in lung cancer patients receiving chemoradiotherapy.

机构信息

Department of Basic Medical Sciences, Ghent University, Ghent, Belgium.

出版信息

Int J Radiat Oncol Biol Phys. 2011 Oct 1;81(2):537-44. doi: 10.1016/j.ijrobp.2011.03.012. Epub 2011 May 24.

Abstract

PURPOSE

To construct a model for the prediction of acute esophagitis in lung cancer patients receiving chemoradiotherapy by combining clinical data, treatment parameters, and genotyping profile.

PATIENTS AND METHODS

Data were available for 273 lung cancer patients treated with curative chemoradiotherapy. Clinical data included gender, age, World Health Organization performance score, nicotine use, diabetes, chronic disease, tumor type, tumor stage, lymph node stage, tumor location, and medical center. Treatment parameters included chemotherapy, surgery, radiotherapy technique, tumor dose, mean fractionation size, mean and maximal esophageal dose, and overall treatment time. A total of 332 genetic polymorphisms were considered in 112 candidate genes. The predicting model was achieved by lasso logistic regression for predictor selection, followed by classic logistic regression for unbiased estimation of the coefficients. Performance of the model was expressed as the area under the curve of the receiver operating characteristic and as the false-negative rate in the optimal point on the receiver operating characteristic curve.

RESULTS

A total of 110 patients (40%) developed acute esophagitis Grade ≥2 (Common Terminology Criteria for Adverse Events v3.0). The final model contained chemotherapy treatment, lymph node stage, mean esophageal dose, gender, overall treatment time, radiotherapy technique, rs2302535 (EGFR), rs16930129 (ENG), rs1131877 (TRAF3), and rs2230528 (ITGB2). The area under the curve was 0.87, and the false-negative rate was 16%.

CONCLUSION

Prediction of acute esophagitis can be improved by combining clinical, treatment, and genetic factors. A multicomponent prediction model for acute esophagitis with a sensitivity of 84% was constructed with two clinical parameters, four treatment parameters, and four genetic polymorphisms.

摘要

目的

通过结合临床数据、治疗参数和基因分型谱,构建预测肺癌患者放化疗后急性食管炎的模型。

方法

本研究纳入了 273 例接受根治性放化疗的肺癌患者。临床数据包括性别、年龄、世界卫生组织体能状态评分、吸烟史、糖尿病、慢性疾病、肿瘤类型、肿瘤分期、淋巴结分期、肿瘤部位和医疗中心。治疗参数包括化疗、手术、放疗技术、肿瘤剂量、平均分割剂量、食管平均和最大剂量以及总治疗时间。共考虑了 112 个候选基因中的 332 个遗传多态性。通过套索逻辑回归进行预测因子选择,随后采用经典逻辑回归进行系数的无偏估计,构建预测模型。模型的性能通过受试者工作特征曲线下的面积和受试者工作特征曲线上最优点的假阴性率来表示。

结果

共有 110 例(40%)患者发生了急性食管炎≥2 级(不良事件通用术语标准 3.0 版)。最终模型包含化疗治疗、淋巴结分期、食管平均剂量、性别、总治疗时间、放疗技术、rs2302535(EGFR)、rs16930129(ENG)、rs1131877(TRAF3)和 rs2230528(ITGB2)。曲线下面积为 0.87,假阴性率为 16%。

结论

通过结合临床、治疗和遗传因素,可以提高急性食管炎的预测能力。本研究构建了一个包含两个临床参数、四个治疗参数和四个遗传多态性的急性食管炎多成分预测模型,其灵敏度为 84%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验