Suppr超能文献

利用基于非跟踪的应变估计和时空张量分析识别心肌应变中的区域性心脏异常。

Identifying regional cardiac abnormalities from myocardial strains using nontracking-based strain estimation and spatio-temporal tensor analysis.

机构信息

Center for Computational Biomedicine Imaging and Modeling (CBIM), Rutgers University, Piscataway, NJ 08854, USA.

出版信息

IEEE Trans Med Imaging. 2011 Dec;30(12):2017-29. doi: 10.1109/TMI.2011.2156805. Epub 2011 May 19.

Abstract

Myocardial strain is a critical indicator of many cardiac diseases and dysfunctions. The goal of this paper is to extract and use the myocardial strain pattern from tagged magnetic resonance imaging (MRI) to identify and localize regional abnormal cardiac function in human subjects. In order to extract the myocardial strains from the tagged images, we developed a novel nontracking-based strain estimation method for tagged MRI. This method is based on the direct extraction of tag deformation, and therefore avoids some limitations of conventional displacement or tracking-based strain estimators. Based on the extracted spatio-temporal strain patterns, we have also developed a novel tensor-based classification framework that better conserves the spatio-temporal structure of the myocardial strain pattern than conventional vector-based classification algorithms. In addition, the tensor-based projection function keeps more of the information of the original feature space, so that abnormal tensors in the subspace can be back-projected to reveal the regional cardiac abnormality in a more physically meaningful way. We have tested our novel methods on 41 human image sequences, and achieved a classification rate of 87.80%. The regional abnormalities recovered from our algorithm agree well with the patient's pathology and clinical image interpretation, and provide a promising avenue for regional cardiac function analysis.

摘要

心肌应变为许多心脏疾病和功能障碍的重要指标。本文的目的是从标记的磁共振成像(MRI)中提取和利用心肌应变模式,以识别和定位人体的区域性异常心脏功能。为了从标记图像中提取心肌应变,我们开发了一种新的基于非跟踪的标记 MRI 应变估计方法。该方法基于直接提取标记变形,因此避免了传统位移或基于跟踪的应变估计器的一些限制。基于提取的时空应变模式,我们还开发了一种新的基于张量的分类框架,该框架比传统的基于向量的分类算法更好地保留了心肌应变模式的时空结构。此外,基于张量的投影函数保留了更多原始特征空间的信息,因此子空间中的异常张量可以被反向投影,以更有物理意义的方式揭示区域性心脏异常。我们在 41 个人类图像序列上测试了我们的新方法,分类率达到 87.80%。我们的算法恢复的区域性异常与患者的病理学和临床图像解释相符,为区域性心脏功能分析提供了有前途的途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验