Suppr超能文献

基于心脏CT图像的局部梗死识别:一种计算机辅助生物力学方法。

Regional infarction identification from cardiac CT images: a computer-aided biomechanical approach.

作者信息

Wong Ken C L, Tee Michael, Chen Marcus, Bluemke David A, Summers Ronald M, Yao Jianhua

机构信息

Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, USA.

Institute of Biomedical Engineering, University of Oxford, Oxford, UK.

出版信息

Int J Comput Assist Radiol Surg. 2016 Sep;11(9):1573-83. doi: 10.1007/s11548-016-1404-5. Epub 2016 Apr 12.

Abstract

PURPOSE

Regional infarction identification is important for heart disease diagnosis and management, and myocardial deformation has been shown to be effective for this purpose. Although tagged and strain-encoded MR images can provide such measurements, they are uncommon in clinical routine. On the contrary, cardiac CT images are more available with lower costs, but they only provide motion of cardiac boundaries and additional constraints are required to obtain the myocardial strains. The goal of this study is to verify the potential of contrast-enhanced CT images on computer-aided regional infarction identification.

METHODS

We propose a biomechanical approach combined with machine learning algorithms. A hyperelastic biomechanical model is used with deformable image registration to estimate 3D myocardial strains from CT images. The regional strains and CT image intensities are input to a classifier for regional infarction identification. Cross-validations on ten canine image sequences with artificially induced infarctions were used to study the performances of using different feature combinations and machine learning algorithms.

RESULTS

Radial strain, circumferential strain, first principal strain, and image intensity were shown to be discriminative features. The highest identification accuracy ([Formula: see text] %) was achieved when combining radial strain with image intensity. Random forests gave better results than support vector machines on less discriminative features. Random forests also performed better when all strains were used together.

CONCLUSION

Although CT images cannot directly measure myocardial deformation, with the use of a biomechanical model, the estimated strains can provide promising identification results especially when combined with CT image intensity.

摘要

目的

区域梗死识别对于心脏病的诊断和治疗很重要,心肌变形已被证明对此有效。尽管标记和应变编码的磁共振图像可以提供此类测量,但它们在临床常规中并不常见。相反,心脏CT图像更易获取且成本更低,但它们仅提供心脏边界的运动,需要额外的约束条件来获取心肌应变。本研究的目的是验证对比增强CT图像在计算机辅助区域梗死识别中的潜力。

方法

我们提出一种结合机器学习算法的生物力学方法。使用超弹性生物力学模型和可变形图像配准从CT图像估计三维心肌应变。将区域应变和CT图像强度输入分类器进行区域梗死识别。对十个有人为诱导梗死的犬类图像序列进行交叉验证,以研究使用不同特征组合和机器学习算法的性能。

结果

径向应变、周向应变、第一主应变和图像强度被证明是有区分力的特征。将径向应变与图像强度相结合时,识别准确率最高([公式:见原文]%)。在区分性较差的特征上,随机森林比支持向量机给出了更好的结果。当所有应变一起使用时,随机森林的表现也更好。

结论

尽管CT图像不能直接测量心肌变形,但通过使用生物力学模型,估计的应变可以提供有前景的识别结果,尤其是与CT图像强度相结合时。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/336e/5527562/78ea726841e7/nihms878965f1.jpg

相似文献

引用本文的文献

3
Image-Based Cardiac Diagnosis With Machine Learning: A Review.基于图像的机器学习心脏诊断:综述
Front Cardiovasc Med. 2020 Jan 24;7:1. doi: 10.3389/fcvm.2020.00001. eCollection 2020.
4
An Overview on Image Registration Techniques for Cardiac Diagnosis and Treatment.心脏诊断与治疗中的图像配准技术综述
Cardiol Res Pract. 2018 Aug 8;2018:1437125. doi: 10.1155/2018/1437125. eCollection 2018.
6
Machine Learning Approaches in Cardiovascular Imaging.心血管成像中的机器学习方法
Circ Cardiovasc Imaging. 2017 Oct;10(10). doi: 10.1161/CIRCIMAGING.117.005614.

本文引用的文献

4
Third universal definition of myocardial infarction.心肌梗死的第三次全球定义。
J Am Coll Cardiol. 2012 Oct 16;60(16):1581-98. doi: 10.1016/j.jacc.2012.08.001. Epub 2012 Sep 5.
5
Cardiac motion and deformation recovery from MRI: a review.从 MRI 中恢复心脏运动和变形:综述。
IEEE Trans Med Imaging. 2012 Feb;31(2):487-503. doi: 10.1109/TMI.2011.2171706. Epub 2011 Oct 13.
7
Strain and strain rate echocardiography and coronary artery disease.应变及应变率超声心动图与冠状动脉疾病
Circ Cardiovasc Imaging. 2011 Mar;4(2):179-90. doi: 10.1161/CIRCIMAGING.110.959817.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验