Suppr超能文献

参数化信号流形的离散化。

Discretization of parametrizable signal manifolds.

机构信息

Signal Processing Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.

出版信息

IEEE Trans Image Process. 2011 Dec;20(12):3621-33. doi: 10.1109/TIP.2011.2155077. Epub 2011 May 19.

Abstract

Transformation-invariant analysis of signals often requires the computation of the distance from a test pattern to a transformation manifold. In particular, the estimation of the distances between a transformed query signal and several transformation manifolds representing different classes provides essential information for the classification of the signal. In many applications, the computation of the exact distance to the manifold is costly, whereas an efficient practical solution is the approximation of the manifold distance with the aid of a manifold grid. In this paper, we consider a setting with transformation manifolds of known parameterization. We first present an algorithm for the selection of samples from a single manifold that permits to minimize the average error in the manifold distance estimation. Then we propose a method for the joint discretization of multiple manifolds that represent different signal classes, where we optimize the transformation-invariant classification accuracy yielded by the discrete manifold representation. Experimental results show that sampling each manifold individually by minimizing the manifold distance estimation error outperforms baseline sampling solutions with respect to registration and classification accuracy. Performing an additional joint optimization on all samples improves the classification performance further. Moreover, given a fixed total number of samples to be selected from all manifolds, an asymmetric distribution of samples to different manifolds depending on their geometric structures may also increase the classification accuracy in comparison with the equal distribution of samples.

摘要

信号的变换不变分析通常需要计算测试模式与变换流形之间的距离。特别是,估计转换查询信号与代表不同类别的几个变换流形之间的距离为信号分类提供了重要信息。在许多应用中,计算到流形的确切距离是昂贵的,而有效的实际解决方案是借助流形网格来近似流形距离。在本文中,我们考虑了具有已知参数化变换流形的设置。我们首先提出了一种从单个流形中选择样本的算法,该算法可以最小化流形距离估计中的平均误差。然后,我们提出了一种联合离散多个流形的方法,这些流形代表不同的信号类,我们优化了由离散流形表示产生的变换不变分类精度。实验结果表明,通过最小化流形距离估计误差来单独对每个流形进行采样在注册和分类精度方面优于基线采样解决方案。对所有样本进行额外的联合优化进一步提高了分类性能。此外,给定要从所有流形中选择的固定总样本数量,根据它们的几何结构将样本不对称地分配到不同的流形也可能会提高分类精度,与样本的均匀分布相比。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验