Suppr超能文献

联合流形的数据融合。

Joint manifolds for data fusion.

机构信息

Department of Statistics, Stanford University, Stanford, CA 94305 USA.

出版信息

IEEE Trans Image Process. 2010 Oct;19(10):2580-94. doi: 10.1109/TIP.2010.2052821. Epub 2010 Jun 14.

Abstract

The emergence of low-cost sensing architectures for diverse modalities has made it possible to deploy sensor networks that capture a single event from a large number of vantage points and using multiple modalities. In many scenarios, these networks acquire large amounts of very high-dimensional data. For example, even a relatively small network of cameras can generate massive amounts of high-dimensional image and video data. One way to cope with this data deluge is to exploit low-dimensional data models. Manifold models provide a particularly powerful theoretical and algorithmic framework for capturing the structure of data governed by a small number of parameters, as is often the case in a sensor network. However, these models do not typically take into account dependencies among multiple sensors. We thus propose a new joint manifold framework for data ensembles that exploits such dependencies. We show that joint manifold structure can lead to improved performance for a variety of signal processing algorithms for applications including classification and manifold learning. Additionally, recent results concerning random projections of manifolds enable us to formulate a scalable and universal dimensionality reduction scheme that efficiently fuses the data from all sensors.

摘要

低成本传感器架构的出现使得能够部署传感器网络,从大量有利位置捕获单个事件,并使用多种模式。在许多情况下,这些网络会获取大量非常高维的数据。例如,即使是一个相对较小的摄像机网络也可以生成大量的高维图像和视频数据。应对这种数据泛滥的一种方法是利用低维数据模型。流形模型为捕获由少数参数控制的数据结构提供了一个特别强大的理论和算法框架,这在传感器网络中经常是这样的情况。然而,这些模型通常没有考虑多个传感器之间的依赖关系。因此,我们提出了一种新的用于数据集合的联合流形框架,利用了这种依赖关系。我们表明,联合流形结构可以为各种信号处理算法带来更好的性能,这些算法的应用包括分类和流形学习。此外,有关流形的随机投影的最新结果使我们能够制定一种可扩展且通用的降维方案,该方案可以有效地融合来自所有传感器的数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验