Neuroscience Research Australia, and University of New South Wales, Barker Street, Randwick, New South Wales, Australia, 2031.
J Physiol. 2011 Jul 15;589(Pt 14):3533-44. doi: 10.1113/jphysiol.2011.207191. Epub 2011 May 23.
During fatigue caused by a sustained maximal voluntary contraction (MVC), motoneurones become markedly less responsive when tested during the silent period following transcranial magnetic stimulation (TMS). To determine whether this reduction depends on the repetitive activation of the motoneurones, responses to TMS (motor evoked potentials, MEPs) and to cervicomedullary stimulation (cervicomedullary motor evoked potentials, CMEPs) were tested during a sustained submaximal contraction at a constant level of electromyographic activity (EMG). In such a contraction, some motoneurones are repetitively activated whereas others are not active. On four visits, eight subjects performed a 10 min maintained-EMG elbow flexor contraction of 25% maximum. Test stimuli were delivered with and without conditioning by TMS given 100 ms prior. Test responses were MEPs or CMEPs (two visits each, small responses evoked by weak stimuli on one visit and large responses on the other). During the sustained contraction, unconditioned CMEPs decreased ∼20% whereas conditioned CMEPs decreased ∼75 and 30% with weak and strong stimuli, respectively. Conditioned MEPs were reduced to the same extent as CMEPs of the same size. The data reveal a novel decrease in motoneurone excitability during a submaximal contraction if EMG is maintained. Further, the much greater reduction of conditioned than unconditioned CMEPs shows the critical influence of voluntary drive on motoneurone responsiveness. Strong test stimuli attenuate the reduction of conditioned CMEPs which indicates that low-threshold motoneurones active in the contraction are most affected. The equivalent reduction of conditioned MEPs and CMEPs suggests that, similar to findings with a sustained MVC, impaired motoneurone responsiveness rather than intracortical inhibition is responsible for the fatigue-related impairment of the MEP during a sustained submaximal contraction.
在经颅磁刺激 (TMS) 后的静息期进行测试时,持续最大自主收缩 (MVC) 引起的疲劳会导致运动神经元的反应明显降低。为了确定这种降低是否依赖于运动神经元的重复激活,在持续的亚最大收缩期间,以恒定的肌电图 (EMG) 活动水平测试了 TMS(运动诱发电位,MEP)和颈髓刺激(颈髓运动诱发电位,CMEP)的反应。在这种收缩中,一些运动神经元被重复激活,而其他则不活跃。在四次访问中,八名受试者进行了 10 分钟的 25%最大保持 EMG 肘部屈肌收缩。测试刺激在有和没有条件刺激的情况下被给予,条件刺激是在 100 毫秒前给予的 TMS。测试反应是 MEP 或 CMEP(每次访问各两次,一次用弱刺激诱发小反应,另一次用强刺激诱发大反应)。在持续收缩期间,未条件 CMEP 降低约 20%,而弱刺激和强刺激的条件 CMEP 分别降低约 75%和 30%。条件 MEP 降低的幅度与相同大小的 CMEP 相同。数据显示,如果 EMG 保持不变,在亚最大收缩期间运动神经元兴奋性会出现新的降低。此外,与未条件 CMEP 相比,条件 CMEP 的降低幅度更大,这表明自愿驱动对运动神经元反应性的关键影响。强测试刺激会减弱条件 CMEP 的降低,这表明在收缩中活跃的低阈值运动神经元受到的影响最大。条件 MEP 和 CMEP 的等效降低表明,与持续 MVC 的发现类似,疲劳相关的亚最大持续收缩期间 MEP 疲劳的原因是运动神经元反应性受损,而不是皮质内抑制。