Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, 75005 Paris, France.
Plant Mol Biol. 2011 Jul;76(3-5):397-405. doi: 10.1007/s11103-011-9783-z. Epub 2011 May 24.
The nuclear factor, Maturation/stability of RbcL (MRL1), regulates the accumulation of the chloroplast rbcL gene transcript in Chlamydomonas reinhardtii by stabilising the mRNA via its 5' UTR. An absence of MRL1 in algal mrl1 mutants leads to a complete absence of RuBisCO large subunit protein and thus a lack of accumulation of the RuBisCO holoenzyme. By complementing mrl1 mutants by random transformation of the nuclear genome with the MRL1 cDNA, different levels of rbcL transcript accumulate. We also observe that RuBisCO Large Subunit accumulation is perturbed. Complemented strains accumulating as little as 15% RuBisCO protein can grow phototrophically while RuBisCO in this range is limiting for phototrophic growth. We also observe that photosynthetic activity, here measured by the quantum yield of PSII, appears to be a determinant for phototrophic growth. In some strains that accumulate less RuBisCO, a strong production of reactive oxygen species is detected. In the absence of RuBisCO, oxygen possibly acts as the PSI terminal electron acceptor. These results show that random transformation of MRL1 into mrl1 mutants can change RuBisCO accumulation allowing a range of phototrophic growth phenotypes. Furthermore, this technique allows for the isolation of strains with low RuBisCO, within the range of acceptable photosynthetic growth and reasonably low ROS production. MRL1 is thus a potential tool for applications to divert electrons away from photosynthetic carbon metabolism towards alternative pathways.
核因子,RbcL(MRL1)成熟/稳定因子,通过其 5'UTR 稳定 mRNA 来调节衣藻 rbcL 基因转录本在叶绿体中的积累。藻类 mrl1 突变体中缺乏 MRL1 会导致 RuBisCO 大亚基蛋白完全缺失,从而导致 RuBisCO 全酶积累不足。通过随机转化核基因组并用 MRL1 cDNA 互补 mrl1 突变体,可积累不同水平的 rbcL 转录本。我们还观察到 RuBisCO 大亚基积累受到干扰。积累 RuBisCO 蛋白低至 15%的互补菌株可以进行光合作用生长,而该范围内的 RuBisCO 是光合作用生长的限制因素。我们还观察到光合作用活性,这里通过 PSII 的量子产率来衡量,似乎是光合作用生长的决定因素。在一些积累较少 RuBisCO 的菌株中,检测到强烈的活性氧产生。在没有 RuBisCO 的情况下,氧气可能作为 PSI 末端电子受体。这些结果表明,随机转化 MRL1 到 mrl1 突变体可以改变 RuBisCO 积累,从而允许一系列光合作用生长表型。此外,该技术可用于分离在可接受的光合作用生长范围内、活性氧产生较低且 RuBisCO 水平较低的菌株。因此,MRL1 是一种潜在的工具,可用于将电子从光合碳代谢转移到替代途径。