Lee T C, Lin F M, Ho I C, Liu T Y, Wang T C, Chu Y I, Chang H Y
Institutes of Biomedical Sciences, Academia Sinica, Taiwan, R.O.C.
Cell Biol Int Rep. 1990 Mar;14(3):235-46. doi: 10.1016/s0309-1651(05)80006-2.
Two paraquat-resistant clones, PR-1 and PR-2, were selected from CHO K1 cells pretreated with ethyl methanesulfonate. PR-1 and PR-2, routinely cultured in a normal medium without paraquat, were six fold more resistant to paraquat than the parental CHO K1 cells. There was no difference in the uptake of [3H]paraquat among PR-1, PR-2, and CHO K1 cells. Both PR-1 and PR-2 cells showed no cross resistance to free radical generating agents and no increase in total activity of superoxide dismutase. The activities of paraquat-dependent NADPH oxidase and glucose-6-phosphate dehydrogenase were significantly reduced in PR-1 and PR-2 cells, hence the rate of paraquat radical formation will be limited. In addition, an elevation of glutathione levels in PR-1 cells or an increase in glutathione S-transferase activity in PR-2 cells may also play a certain role in protective mechanisms against the toxicity of paraquat.