Suppr超能文献

序列因果学习中的类别迁移:未中断机制假说。

Category transfer in sequential causal learning: the unbroken mechanism hypothesis.

机构信息

Department of Psychology, University of Göttingen, Germany.

出版信息

Cogn Sci. 2011 Jul;35(5):842-73. doi: 10.1111/j.1551-6709.2011.01179.x. Epub 2011 May 24.

Abstract

The goal of the present set of studies is to explore the boundary conditions of category transfer in causal learning. Previous research has shown that people are capable of inducing categories based on causal learning input, and they often transfer these categories to new causal learning tasks. However, occasionally learners abandon the learned categories and induce new ones. Whereas previously it has been argued that transfer is only observed with essentialist categories in which the hidden properties are causally relevant for the target effect in the transfer relation, we here propose an alternative explanation, the unbroken mechanism hypothesis. This hypothesis claims that categories are transferred from a previously learned causal relation to a new causal relation when learners assume a causal mechanism linking the two relations that is continuous and unbroken. The findings of two causal learning experiments support the unbroken mechanism hypothesis.

摘要

本研究旨在探索因果学习中类别迁移的边界条件。先前的研究表明,人们能够基于因果学习输入来推断类别,并且他们通常会将这些类别迁移到新的因果学习任务中。然而,学习者有时会放弃所学的类别并推断出新的类别。虽然先前有人认为,只有在本质主义类别中才会观察到迁移,在这些类别中,隐藏属性与转移关系中目标效应的因果关系有关,但我们在这里提出了另一种解释,即未中断机制假说。该假说声称,当学习者假设两个关系之间存在连续且未中断的因果机制时,就会将先前学习的因果关系中的类别迁移到新的因果关系中。两个因果学习实验的结果支持了未中断机制假说。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验