Department of Chemistry, Stanford University, Mail Code 5080, Stanford, California 94305-5080, USA.
ACS Nano. 2011 Jul 26;5(7):5792-9. doi: 10.1021/nn2014968. Epub 2011 Jun 3.
We present the design and implementation of an adaptive Anti-Brownian ELectrokinetic (ABEL) trap capable of extracting estimates of the diffusion coefficient and mobility of single trapped fluorescent nanoscale objects such as biomolecules in solution. The system features rapid acousto-optic scanning of a confocal excitation spot on a 2D square lattice to encode position information on the arrival time of each detected photon, and Kalman filter-based signal processing unit for refined position estimation. We demonstrate stable trapping of multisubunit proteins (D ≈ 22 μm(2)/s) with a count rate of 6 kHz for as long as 15 s and small single-stranded DNA molecules (D ≈ 118 μm(2)/s) at a 15 kHz count rate for seconds. Moreover, we demonstrate real-time measurement of diffusion coefficient and electrokinetic mobility of trapped objects, using adaptive tuning of the Kalman filter parameters.
我们提出了一种自适应的 Anti-Brownian ELectrokinetic (ABEL) 陷阱的设计和实现,该陷阱能够提取单个荧光纳米级物体(如溶液中的生物分子)的扩散系数和迁移率的估计值。该系统的特点是快速声光扫描共焦激发点在二维正方形格子上,以对每个检测到的光子的到达时间进行位置信息编码,以及基于卡尔曼滤波的信号处理单元进行精细的位置估计。我们演示了多亚基蛋白质(D ≈ 22 μm(2)/s)的稳定捕获,其计数率为 6 kHz,持续时间长达 15 s,以及小的单链 DNA 分子(D ≈ 118 μm(2)/s)的计数率为 15 kHz,持续时间为几秒钟。此外,我们还通过自适应调整卡尔曼滤波器参数,演示了对捕获物体的扩散系数和电泳迁移率的实时测量。