Suppr超能文献

作为 SOD 模拟物的阳离子 Mn(III) N-取代吡啶卟啉的多种功能。

Diverse functions of cationic Mn(III) N-substituted pyridylporphyrins, recognized as SOD mimics.

机构信息

Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA.

出版信息

Free Radic Biol Med. 2011 Sep 1;51(5):1035-53. doi: 10.1016/j.freeradbiomed.2011.04.046. Epub 2011 May 6.

Abstract

Oxidative stress, a redox imbalance between the endogenous reactive species and antioxidant systems, is common to numerous pathological conditions such as cancer, central nervous system injuries, radiation injury, diabetes etc. Therefore, compounds able to reduce oxidative stress have been actively sought for over 3 decades. Superoxide is the major species involved in oxidative stress either in its own right or through its progeny, such as ONOO⁻, H₂O₂, •OH, CO₃•⁻, and •NO₂. Hence, the very first compounds developed in the late 1970-ies were the superoxide dismutase (SOD) mimics. Thus far the most potent mimics have been the cationic meso Mn(III) N-substituted pyridylporphyrins and N,N'-disubstituted imidazolylporphyrins (MnPs), some of them with k(cat)(O₂·⁻) similar to the k(cat) of SOD enzymes. Most frequently studied are ortho isomers MnTE-2-PyP⁵⁺, MnTnHex-2-PyP⁵⁺, and MnTDE-2-ImP⁵⁺. The ability to disproportionate O₂·⁻ parallels their ability to remove the other major oxidizing species, peroxynitrite, ONOO⁻. The same structural feature that gives rise to the high k(cat)(O₂·⁻) and k(red)(ONOO⁻), allows MnPs to strongly impact the activation of the redox-sensitive transcription factors, HIF-1α, NF-κB, AP-1, and SP-1, and therefore modify the excessive inflammatory and immune responses. Coupling with cellular reductants and other redox-active endogenous proteins seems to be involved in the actions of Mn porphyrins. While hydrophilic analogues, such as MnTE-2-PyP⁵⁺ and MnTDE-2-ImP⁵⁺ are potent in numerous animal models of diseases, the lipophilic analogues, such as MnTnHex-2-PyP⁵⁺, were developed to cross blood brain barrier and target central nervous system and critical cellular compartments, mitochondria. The modification of its structure, aimed to preserve the SOD-like potency and lipophilicity, and diminish the toxicity, has presently been pursued. The pulmonary radioprotection by MnTnHex-2-PyP⁵⁺ was the first efficacy study performed successfully with non-human primates. The Phase I toxicity clinical trials were done on amyotrophic lateral sclerosis patients with N,N'-diethylimidazolium analogue, MnTDE-2-ImP⁵⁺ (AEOL10150). Its aggressive development as a wide spectrum radioprotector by Aeolus Pharmaceuticals has been supported by USA Federal government. The latest generation of compounds, bearing oxygens in pyridyl substituents is presently under aggressive development for cancer and CNS injuries at Duke University and is supported by Duke Translational Research Institute, The Wallace H. Coulter Translational Partners Grant Program, Preston Robert Tisch Brain Tumor Center at Duke, and National Institute of Allergy and Infectious Diseases. Metal center of cationic MnPs easily accepts and donates electrons as exemplified in the catalysis of O₂·⁻ dismutation. Thus such compounds may be equally good anti- and pro-oxidants; in either case the beneficial therapeutic effects may be observed. Moreover, while the in vivo effects may appear antioxidative, the mechanism of action of MnPs that produced such effects may be pro-oxidative; the most obvious example being the inhibition of NF-κB. The experimental data therefore teach us that we need to distinguish between the mechanism/s of action/s of MnPs and the effects we observe. A number of factors impact the type of action of MnPs leading to favorable therapeutic effects: levels of reactive species and oxygen, levels of endogenous antioxidants (enzymes and low-molecular compounds), levels of MnPs, their site of accumulation, and the mutual encounters of all of those species. The complexity of in vivo redox systems and the complex redox chemistry of MnPs challenge and motivate us to further our understanding of the physiology of the normal and diseased cell with ultimate goal to successfully treat human diseases.

摘要

氧化应激是内源性活性物种和抗氧化系统之间的氧化还原失衡,普遍存在于许多病理状况中,如癌症、中枢神经系统损伤、辐射损伤、糖尿病等。因此,人们在 30 多年来一直在积极寻找能够降低氧化应激的化合物。超氧化物是涉及氧化应激的主要物质,无论是自身还是通过其产物,如 ONOO⁻、H₂O₂、•OH、CO₃•⁻和•NO₂。因此,上世纪 70 年代末开发的第一批化合物是超氧化物歧化酶 (SOD) 的模拟物。到目前为止,最有效的模拟物是阳离子介体 Mn(III) N-取代的吡啶卟啉和 N,N'-二取代的咪唑基卟啉 (MnPs),其中一些具有与 SOD 酶相似的 k(cat)(O₂·⁻)。研究最多的是邻位异构体 MnTE-2-PyP⁵⁺、MnTnHex-2-PyP⁵⁺和 MnTDE-2-ImP⁵⁺。它们将 O₂·⁻歧化的能力与其去除其他主要氧化物质过氧亚硝酸盐 (ONOO⁻) 的能力平行。赋予它们高 k(cat)(O₂·⁻)和 k(red)(ONOO⁻)的相同结构特征,使 MnPs 能够强烈影响氧化还原敏感转录因子 HIF-1α、NF-κB、AP-1 和 SP-1 的激活,从而改变过度的炎症和免疫反应。与细胞还原剂和其他氧化还原活性内源性蛋白质的偶联似乎参与了 Mn 卟啉的作用。虽然亲水性类似物,如 MnTE-2-PyP⁵⁺和 MnTDE-2-ImP⁵⁺在许多疾病的动物模型中都具有很强的作用,但亲脂性类似物,如 MnTnHex-2-PyP⁵⁺,则被开发用于穿过血脑屏障并靶向中枢神经系统和关键细胞区室,线粒体。目前正在进行结构修饰,旨在保留 SOD 样效力和脂溶性,并降低毒性。MnTnHex-2-PyP⁵⁺的肺保护作用是第一个成功在非人类灵长类动物中进行的功效研究。AEOLUS 制药公司正在对肌萎缩侧索硬化症患者进行 N,N'-二乙基咪唑啉类似物 MnTDE-2-ImP⁵⁺(AEOL10150)的 I 期毒性临床试验。美国联邦政府支持 Aeolus 制药公司将其作为广谱辐射防护剂的积极开发。目前,杜克大学正在积极开发最新一代化合物,在吡啶取代基中含有氧原子,用于癌症和中枢神经系统损伤,并得到杜克转化研究所以及华莱士·H·库尔特转化合作伙伴资助计划、杜克脑瘤中心和国家过敏和传染病研究所的支持。阳离子 MnPs 的金属中心很容易接受和捐赠电子,如在 O₂·⁻歧化的催化中所示。因此,这些化合物可能同样是良好的抗氧化剂和促氧化剂;在任何情况下,都可能观察到有益的治疗效果。此外,虽然体内效应可能表现为抗氧化作用,但 MnPs 产生这种作用的作用机制可能是促氧化作用;最明显的例子是 NF-κB 的抑制。实验数据因此教导我们,我们需要区分 MnPs 的作用机制和我们观察到的作用。许多因素影响 MnPs 的作用类型,从而导致有利的治疗效果:活性物质和氧气的水平、内源性抗氧化剂(酶和低分子量化合物)的水平、MnPs 的水平、它们的积累部位以及所有这些物质的相互作用。体内氧化还原系统的复杂性和 MnPs 的复杂氧化还原化学挑战并激励我们进一步了解正常和患病细胞的生理学,最终目标是成功治疗人类疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8e3/3178885/060852b80456/nihms295138f1.jpg

相似文献

7
Anticancer therapeutic potential of Mn porphyrin/ascorbate system.锰卟啉/抗坏血酸体系的抗癌治疗潜力。
Free Radic Biol Med. 2015 Dec;89:1231-47. doi: 10.1016/j.freeradbiomed.2015.10.416. Epub 2015 Oct 20.

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验