Suppr超能文献

超氧化物歧化酶在氧化还原生物学中的作用:超氧阴离子和过氧化氢的作用。

Superoxide dismutase in redox biology: the roles of superoxide and hydrogen peroxide.

机构信息

Free Radical and Radiation Biology, The University of Iowa, Iowa City, 52242-1181, USA.

出版信息

Anticancer Agents Med Chem. 2011 May 1;11(4):341-6. doi: 10.2174/187152011795677544.

Abstract

Superoxide dismutases (SOD) are considered to be antioxidant enzymes. This view came about because its substrate, superoxide, is a free radical; in the era of their discovery, 1960's - 1970's, the general mindset was that free radicals in biology must be damaging. Indeed SOD blunts the cascade of oxidations initiated by superoxide. However in the late 1970's it was observed that cancer cells that have low activity of the mitochondrial form of SOD, MnSOD, grow faster than those with higher activities of MnSOD. These observations indicated that SOD, superoxide, and hydrogen peroxide affected the basic biology of cells and tissues, not just via damaging oxidation reactions. It is now realized that superoxide and hydrogen peroxide are essential for normal cellular and organism function. MnSOD appears to be a central player in the redox biology of cells and tissues.

摘要

超氧化物歧化酶(SOD)被认为是抗氧化酶。这种观点的产生是因为其底物超氧自由基是一种自由基;在发现超氧化物歧化酶的 20 世纪 60 年代至 70 年代,人们普遍认为生物体内的自由基肯定是有害的。事实上,SOD 可以阻止超氧自由基引发的氧化级联反应。然而,在 20 世纪 70 年代后期,人们观察到线粒体形式的 SOD(MnSOD)活性较低的癌细胞比 MnSOD 活性较高的癌细胞生长得更快。这些观察结果表明,SOD、超氧自由基和过氧化氢不仅通过有害的氧化反应影响细胞和组织的基本生物学特性,而且还会影响细胞和组织的基本生物学特性。现在人们已经意识到,超氧自由基和过氧化氢是细胞和组织正常功能所必需的。MnSOD 似乎是细胞和组织氧化还原生物学的核心参与者。

相似文献

1
Superoxide dismutase in redox biology: the roles of superoxide and hydrogen peroxide.
Anticancer Agents Med Chem. 2011 May 1;11(4):341-6. doi: 10.2174/187152011795677544.
2
A new paradigm: manganese superoxide dismutase influences the production of H2O2 in cells and thereby their biological state.
Free Radic Biol Med. 2006 Oct 15;41(8):1338-50. doi: 10.1016/j.freeradbiomed.2006.07.015. Epub 2006 Jul 21.
3
Riding the tiger - physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix.
Crit Rev Biochem Mol Biol. 2020 Dec;55(6):592-661. doi: 10.1080/10409238.2020.1828258. Epub 2020 Nov 4.
4
Superoxide radicals and hydrogen peroxide formation in mitochondria from normal and neoplastic tissues.
Biochim Biophys Acta. 1975 Oct 22;403(2):292-300. doi: 10.1016/0005-2744(75)90059-5.
5
Human disease, free radicals, and the oxidant/antioxidant balance.
Clin Biochem. 1993 Oct;26(5):351-7. doi: 10.1016/0009-9120(93)90111-i.
6
Superoxide as an intracellular radical sink.
Free Radic Biol Med. 1993 Jan;14(1):85-90. doi: 10.1016/0891-5849(93)90512-s.
7
Superoxide dismutase: an antireductant enzyme?
Biochem Soc Trans. 1993 May;21(2):88S. doi: 10.1042/bst021088s.
9
Zymographic Method for Distinguishing Different Classes of Superoxide Dismutases in Plants.
Methods Mol Biol. 2017;1631:221-227. doi: 10.1007/978-1-4939-7136-7_13.
10
The peroxidase activity of mitochondrial superoxide dismutase.
Free Radic Biol Med. 2013 Jan;54:116-24. doi: 10.1016/j.freeradbiomed.2012.08.573. Epub 2012 Aug 28.

引用本文的文献

1
Guardian of myelin and neural Integrity: foxo1a through slc7a11 mitigating oxidative damage in myelin.
Redox Biol. 2025 Jul 12;85:103763. doi: 10.1016/j.redox.2025.103763.
2
Mechanisms of mitochondrial reactive oxygen species action in bone mesenchymal cells.
bioRxiv. 2025 Mar 25:2025.03.24.643319. doi: 10.1101/2025.03.24.643319.
3
Thonningianin A ameliorates acetaminophen-induced liver injury by activating GPX4 and modulating endoplasmic reticulum stress.
Front Pharmacol. 2025 Feb 20;16:1531277. doi: 10.3389/fphar.2025.1531277. eCollection 2025.
5
Non-steroidal anti-inflammatory drugs and oxidative stress biomarkers in fish: a meta-analytic review.
Toxicol Rep. 2025 Jan 13;14:101910. doi: 10.1016/j.toxrep.2025.101910. eCollection 2025 Jun.
6
An amplification mechanism for weak ELF magnetic fields quantum-bio effects in cancer cells.
Sci Rep. 2025 Jan 23;15(1):2964. doi: 10.1038/s41598-025-87235-w.
7
Selenium in cancer management: exploring the therapeutic potential.
Front Oncol. 2025 Jan 7;14:1490740. doi: 10.3389/fonc.2024.1490740. eCollection 2024.
8
The role of circadian rhythm regulator PERs in oxidative stress, immunity, and cancer development.
Cell Commun Signal. 2025 Jan 16;23(1):30. doi: 10.1186/s12964-025-02040-2.
9
Cord blood platelet-rich plasma: proteomics analysis for ophthalmic applications.
Clin Proteomics. 2025 Jan 3;22(1):1. doi: 10.1186/s12014-024-09524-2.

本文引用的文献

1
Manganese superoxide dismutase (Sod2) and redox-control of signaling events that drive metastasis.
Anticancer Agents Med Chem. 2011 Feb;11(2):191-201. doi: 10.2174/187152011795255911.
2
Oxygen homeostasis.
Wiley Interdiscip Rev Syst Biol Med. 2010 May-Jun;2(3):336-361. doi: 10.1002/wsbm.69.
3
Thermodynamic and kinetic considerations for the reaction of semiquinone radicals to form superoxide and hydrogen peroxide.
Free Radic Biol Med. 2010 Sep 15;49(6):919-62. doi: 10.1016/j.freeradbiomed.2010.05.009. Epub 2010 May 21.
4
Redox control of the cell cycle in health and disease.
Antioxid Redox Signal. 2009 Dec;11(12):2985-3011. doi: 10.1089/ars.2009.2513.
5
Reactive oxygen species and peroxisomes: struggling for balance.
Biofactors. 2009 Jul-Aug;35(4):346-55. doi: 10.1002/biof.48.
6
Manganese superoxide dismutase modulates hypoxia-inducible factor-1 alpha induction via superoxide.
Cancer Res. 2008 Apr 15;68(8):2781-8. doi: 10.1158/0008-5472.CAN-07-2635.
7
Manganese superoxide dismutase activity regulates transitions between quiescent and proliferative growth.
Aging Cell. 2008 Jun;7(3):405-17. doi: 10.1111/j.1474-9726.2008.00384.x. Epub 2008 Mar 10.
8
Manganese superoxide dismutase enhances the invasive and migratory activity of tumor cells.
Cancer Res. 2007 Nov 1;67(21):10260-7. doi: 10.1158/0008-5472.CAN-07-1204.
10
The diverse and pervasive chemistries of the alpha-keto acid dependent enzymes.
J Biol Inorg Chem. 2007 Jun;12(5):587-601. doi: 10.1007/s00775-007-0231-0. Epub 2007 Apr 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验