Suppr超能文献

MAML1 通过 NF-κB 通路调节宫颈癌细胞系中的细胞活力。

MAML1 regulates cell viability via the NF-κB pathway in cervical cancer cell lines.

机构信息

Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Payathai Road, Pathumwan, Bangkok, Thailand.

出版信息

Exp Cell Res. 2011 Aug 1;317(13):1830-40. doi: 10.1016/j.yexcr.2011.05.005. Epub 2011 May 24.

Abstract

The Notch signaling pathway plays important roles in tumorigenesis in a context-dependent manner. In human cervical cancer, alterations in Notch signaling have been reported, and both tumor-suppressing and tumor-promoting roles of Notch signaling have been proposed; however, the precise molecular mechanisms governing these roles in cervical cancer remain controversial. MAML is a transcriptional co-activator originally identified by its role in Notch signaling. Recent evidence suggests that it also plays a role in other signaling pathways, such as the p53 and β-catenin pathways. MAML is required for stable formation of Notch transcriptional complexes at the promoters of Notch target genes. Chromosomal translocations affecting MAML have been shown to promote tumorigenesis. In this study, we used a truncated dominant-negative MAML1 (DN-MAML) to investigate the role of MAML in HPV-positive cervical cancer cell lines. Three human cervical cancer cell lines (HeLa, SiHa and CaSki) expressed all Notch receptors and the Notch target genes Hes1 and MAML1. Among these 3 cell lines, constitutive appearance of cleaved Notch1 was found only in CaSki cells, which suggests that Notch1 is constitutively activated in this cell line. Gamma secretase inhibitor (GSI) treatment, which suppresses Notch receptor activation, completely abrogated this form of Notch1 but had no effect on cell viability. Overexpression of DN-MAML by retroviral transduction in CaSki cells resulted in significant decreases in the mRNA levels of Hes1 and Notch1 but had no effects on the levels of MAML1, p53 or HPV E6/E7. DN-MAML expression induced increased viability of CaSki cells without any effect on cell cycle progression or cell proliferation. In addition, clonogenic assay experiments revealed that overexpression of DN-MAML resulted in increased colony formation compared to the overexpression of the control vector. When the status of the NF-κB pathway was investigated, CaSki cells overexpressing DN-MAML exhibited loss of phospho-IκBα, decreased total IκBα and nuclear localization of NF-κB p65, which suggests that the NF-κB pathway is hyperactivated. Furthermore, increased level of cleaved Notch1 was detected when DN-MAML was expressed. When DN-MAML-overexpressing cells were treated with GSI, significantly decreased cell viability was observed, indicating that inhibition of Notch signaling using GSI treatment and DN-MAML expression negatively affects cell viability. Taken together, targeting Notch signaling using DN-MAML and GSI treatment may present a novel method to control cell viability in cervical cancer cells.

摘要

Notch 信号通路在肿瘤发生中起着重要作用,其作用方式依赖于具体的上下文。在人宫颈癌中,已经报道了 Notch 信号的改变,并且 Notch 信号既具有肿瘤抑制作用,也具有肿瘤促进作用;然而,在宫颈癌中调控这些作用的确切分子机制仍存在争议。MAML 是 Notch 信号转导中最初被鉴定的转录共激活因子。最近的证据表明,它还在其他信号通路中发挥作用,如 p53 和 β-catenin 通路。MAML 对于 Notch 靶基因启动子处 Notch 转录复合物的稳定形成是必需的。影响 MAML 的染色体易位已被证明可促进肿瘤发生。在这项研究中,我们使用截断的显性负性 MAML1(DN-MAML)来研究 MAML 在 HPV 阳性宫颈癌细胞系中的作用。三种人宫颈癌细胞系(HeLa、SiHa 和 CaSki)均表达所有 Notch 受体和 Notch 靶基因 Hes1 和 MAML1。在这 3 种细胞系中,只有 CaSki 细胞中发现了 Notch1 的连续切割,这表明 Notch1 在该细胞系中持续激活。γ 分泌酶抑制剂(GSI)处理可抑制 Notch 受体的激活,完全阻断了 Notch1 的这种形式,但对细胞活力没有影响。通过逆转录病毒转导在 CaSki 细胞中过表达 DN-MAML 导致 Hes1 和 Notch1 的 mRNA 水平显著降低,但对 MAML1、p53 或 HPV E6/E7 的水平没有影响。DN-MAML 的表达诱导 CaSki 细胞活力增加,而对细胞周期进程或细胞增殖没有影响。此外,集落形成实验表明,与对照载体的过表达相比,DN-MAML 的过表达导致集落形成增加。当研究 NF-κB 通路的状态时,过表达 DN-MAML 的 CaSki 细胞表现出磷酸化 IκBα 的丧失、总 IκBα 的减少和 NF-κB p65 的核定位,这表明 NF-κB 通路被过度激活。此外,当表达 DN-MAML 时,检测到 Notch1 的连续切割增加。当用 GSI 处理过表达 DN-MAML 的细胞时,观察到细胞活力显著降低,表明使用 GSI 处理和 DN-MAML 表达抑制 Notch 信号转导会对细胞活力产生负面影响。总之,使用 DN-MAML 和 GSI 处理靶向 Notch 信号可能为控制宫颈癌细胞的细胞活力提供一种新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验