Department of Chemistry and Biophysics Program, University of Michigan, Ann Arbor, Michigan, USA.
Biophys J. 2011 Jun 8;100(11):L59-61. doi: 10.1016/j.bpj.2011.04.026.
The long wavelength, low-frequency modes of motion are the relevant motions for understanding the continuum mechanical properties of biomolecules. By examining these low-frequency modes, in the context of a spherical harmonic basis set, we identify four elastic moduli that are required to describe the two-dimensional elastic behavior of capsids. This is in contrast to previous modeling and theoretical studies on elastic shells, which use only the two-dimensional Young's modulus (Y) and the bending modulus (κ) to describe the system. Presumably, the heterogeneity of the structure and the anisotropy of the biomolecular interactions lead to a deviation from the homogeneous, isotropic, linear elastic shell theory. We assign functional relevance of the various moduli governing different deformation modes, including a mode primarily sensed in atomic force microscopy nanoindentation experiments. We have performed our analysis on the T = 3 cowpea chlorotic mottle virus and our estimate for the nanoindentation modulus is in accord with experimental measurements.
长波长、低频率运动模式是理解生物分子连续体力学性质的相关运动模式。通过在球谐函数基组的背景下研究这些低频模式,我们确定了描述衣壳二维弹性行为所需的四个弹性模量。这与以前关于弹性壳的建模和理论研究形成对比,以前的研究仅使用二维杨氏模量 (Y) 和弯曲模量 (κ) 来描述系统。推测起来,结构的异质性和生物分子相互作用的各向异性导致偏离均匀、各向同性、线性弹性壳理论。我们为控制不同变形模式的各种模量赋予了功能相关性,包括在原子力显微镜纳米压痕实验中主要感知到的模式。我们已经在 T = 3 豇豆花叶病毒上进行了分析,我们对纳米压痕模量的估计与实验测量结果一致。