Suppr超能文献

复制后染色质分离的模型:溶液中相同的柔性链的分离。

A model for segregation of chromatin after replication: segregation of identical flexible chains in solution.

机构信息

Leibniz Institute of Polymer Research Dresden, Dresden, Germany.

出版信息

Biophys J. 2011 Jun 8;100(11):2539-47. doi: 10.1016/j.bpj.2011.03.053.

Abstract

We study the segregation of two long chains from parallel but randomly twisted start conformations under good solvent conditions using Monte Carlo simulations to mimic chromatin segregation after replication in eukaryotic cells in the end of prophase. To measure the segregation process, we consider the center-of-mass separation between the two chains and the average square distance between the monomers which were connected before segregation starts. We argue that segregation is dominated by free diffusion of the chains, assuming that untwisting can be achieved by Rouse-like fluctuations on the length scale of a twisted loop. Using scaling analysis, we find that chain dynamics is in very good agreement with the free diffusion hypothesis, and segregation dynamics follows this scaling nearly. Long chains, however, show retardation effects that can be described by a new (to us) dynamical exponent, which is slightly larger than the dynamical exponent for Rouse-like diffusion. Our results indicate that nearly free diffusion of chains during a timescale of a few Rouse-times can lead to segregation of chains. A main obstacle during segregation by free diffusion is random twists between daughter strands. We have calculated the number of twists formed by the daughter strands in the start conformations, which turns out to be rather low and increases only with the square-root of the chain length.

摘要

我们使用蒙特卡罗模拟研究了在良好溶剂条件下两条长链从平行但随机扭曲的起始构象中的分离,以模拟真核细胞末期复制后染色质的分离。为了测量分离过程,我们考虑了两条链的质心分离和在分离开始之前连接的单体的平均平方距离。我们认为,假设解扭可以通过扭结环长度尺度上的类似 Rouse 的涨落来实现,那么分离主要由链的自由扩散主导。通过标度分析,我们发现链动力学与自由扩散假设非常吻合,并且分离动力学几乎遵循这种标度。然而,长链表现出延迟效应,可用一个新的(对我们来说)动力学指数来描述,该指数略大于类似 Rouse 的扩散的动力学指数。我们的结果表明,在几个 Rouse 时间的时间尺度内,链的几乎自由扩散可以导致链的分离。自由扩散过程中分离的主要障碍是子链之间的随机扭曲。我们已经计算了起始构象中形成的子链的扭曲数量,结果发现扭曲数量相当低,并且仅随链长的平方根增加。

相似文献

2
Kinetics of loop formation in polymer chains.
J Phys Chem B. 2008 May 15;112(19):6094-106. doi: 10.1021/jp076510y. Epub 2008 Feb 13.
6
Theoretical Model for Solvent-Induced Base Stacking Interactions in Solvent-Free DNA Simulations.
J Phys Chem B. 2019 Mar 7;123(9):1939-1949. doi: 10.1021/acs.jpcb.8b10848. Epub 2019 Feb 20.
7
Revisiting blob theory for DNA diffusivity in slitlike confinement.
Phys Rev Lett. 2013 Apr 19;110(16):168105. doi: 10.1103/PhysRevLett.110.168105.
8
Computer simulation of the 30-nanometer chromatin fiber.
Biophys J. 2002 Jun;82(6):2847-59. doi: 10.1016/S0006-3495(02)75627-0.
9
Anomalous diffusion of a tethered membrane: a Monte Carlo investigation.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Apr;77(4 Pt 1):041906. doi: 10.1103/PhysRevE.77.041906. Epub 2008 Apr 15.

引用本文的文献

1
SMC complexes: Lifting the lid on loop extrusion.
Curr Opin Cell Biol. 2022 Feb;74:13-22. doi: 10.1016/j.ceb.2021.12.003. Epub 2022 Jan 8.
2
Comparison of loop extrusion and diffusion capture as mitotic chromosome formation pathways in fission yeast.
Nucleic Acids Res. 2021 Feb 22;49(3):1294-1312. doi: 10.1093/nar/gkaa1270.

本文引用的文献

1
Demixing of compact polymers chains in three dimensions.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Nov;82(5 Pt 1):051802. doi: 10.1103/PhysRevE.82.051802. Epub 2010 Nov 11.
2
The physics behind the larger scale organization of DNA in eukaryotes.
Phys Biol. 2009 Jul 1;6(2):025008. doi: 10.1088/1478-3975/6/2/025008.
3
Brownian dynamics simulations reveal regulatory properties of higher-order chromatin structures.
Eur Biophys J. 2009 Jul;38(6):749-56. doi: 10.1007/s00249-009-0486-1. Epub 2009 Jun 18.
4
Replicating chromatin: a tale of histones.
Biochem Cell Biol. 2009 Feb;87(1):51-63. doi: 10.1139/O08-102.
5
Compression and stretching of a self-avoiding chain in cylindrical nanopores.
Phys Rev Lett. 2008 Sep 26;101(13):138101. doi: 10.1103/PhysRevLett.101.138101. Epub 2008 Sep 22.
6
Unexpected relaxation dynamics of a self-avoiding polymer in cylindrical confinement.
J Chem Phys. 2007 Oct 28;127(16):164903. doi: 10.1063/1.2799513.
7
Time scale of entropic segregation of flexible polymers in confinement: implications for chromosome segregation in filamentous bacteria.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Sep;76(3 Pt 1):031901. doi: 10.1103/PhysRevE.76.031901. Epub 2007 Sep 5.
8
How are cohesin rings opened and closed?
Trends Biochem Sci. 2007 Apr;32(4):154-7. doi: 10.1016/j.tibs.2007.02.002. Epub 2007 Feb 21.
9
DNA-protein interactions and bacterial chromosome architecture.
Phys Biol. 2006 Dec 22;3(4):R1-10. doi: 10.1088/1478-3975/3/4/R01.
10
Entropy-driven spatial organization of highly confined polymers: lessons for the bacterial chromosome.
Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12388-93. doi: 10.1073/pnas.0605305103. Epub 2006 Aug 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验