Adhesion & Inflammation, INSERM UMR 600 and Centre National de la Recherche Scientifique UMR 6212, Aix-Marseille University, Campus Luminy, Marseille, France.
Biophys J. 2011 Jun 8;100(11):2642-51. doi: 10.1016/j.bpj.2011.04.011.
The binding properties of biomolecules play a crucial role in many biological phenomena, especially cell adhesion. Whereas the attachment kinetics of soluble proteins is considered well known, complex behavior arises when protein molecules are bound to the cell membrane. We probe the hidden kinetics of ligand-receptor bond formation using single-molecule flow chamber assays and Brownian dynamics simulations. We show that, consistent with our recently proposed hypothesis, association requires a minimum duration of contact between the reactive species. In our experiments, ICAM-1 anchored on a flat substrate binds to anti-ICAM-1 coated onto flowing microbeads. The interaction potential between bead and substrate is measured by microinterferometry and is used as an ingredient to simulate bead movement. Our simulation calculates the duration of ligand-receptor contacts imposed by the bead movement. We quantitatively predict the reduction of adhesion probability measured for shorter tether length of the ligand or if a repulsive hyaluronan layer is added onto the surface. To account for our results, we propose that bond formation may occur in our system by crossing of a diffusive plateau in the energy landscape, on the timescale of 5 ms and an energy barrier of 5 k(B)T, before reaching the first detectable bound state. Our results show how to relate cell-scale behavior to the combined information of molecular reactivity and biomolecule submicron-scale environment.
生物分子的结合特性在许多生物现象中起着至关重要的作用,特别是细胞黏附。虽然可溶性蛋白的附着动力学被认为是已知的,但当蛋白质分子结合到细胞膜上时,就会出现复杂的行为。我们使用单分子流动室测定法和布朗动力学模拟来探测配体-受体键形成的隐藏动力学。我们表明,与我们最近提出的假设一致,缔合需要反应性物质之间的最小接触持续时间。在我们的实验中,固定在平面基底上的 ICAM-1 与流动微珠上涂覆的抗 ICAM-1 结合。通过微干涉测量法测量珠与基底之间的相互作用势能,并将其用作模拟珠运动的成分。我们的模拟计算了由珠运动施加的配体-受体接触的持续时间。我们定量预测了较短的配体系链长度或在表面上添加排斥性透明质酸层时测量到的黏附概率的降低。为了解释我们的结果,我们提出,在我们的系统中,键形成可能通过在能量景观中的扩散平台上的跨越来发生,跨越时间为 5 毫秒,能量障碍为 5 k(B)T,然后才能达到第一个可检测的结合状态。我们的结果表明如何将细胞尺度的行为与分子反应性和生物分子亚微米尺度环境的综合信息联系起来。