Suppr超能文献

小样本配对研究中比例差异的置信区间构建

Confidence interval construction for proportion difference in small-sample paired studies.

作者信息

Tang Man-Lai, Tang Nian-Sheng, Chan Ivan S F

机构信息

Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong.

出版信息

Stat Med. 2005 Dec 15;24(23):3565-79. doi: 10.1002/sim.2216.

Abstract

Paired dichotomous data may arise in clinical trials such as pre-/post-test comparison studies and equivalence trials. Reporting parameter estimates (e.g. odds ratio, rate difference and rate ratio) along with their associated confidence interval estimates becomes a necessity in many medical journals. Various asymptotic confidence interval estimators have long been developed for differences in correlated binary proportions. Nevertheless, the performance of these asymptotic methods may have poor coverage properties in small samples. In this article, we investigate several alternative confidence interval estimators for the difference between binomial proportions based on small-sample paired data. Specifically, we consider exact and approximate unconditional confidence intervals for rate difference via inverting a score test. The exact unconditional confidence interval guarantees the coverage probability, and it is recommended if strict control of coverage probability is required. However, the exact method tends to be overly conservative and computationally demanding. Our empirical results show that the approximate unconditional score confidence interval estimators based on inverting the score test demonstrate reasonably good coverage properties even in small-sample designs, and yet they are relatively easy to implement computationally. We illustrate the methods using real examples from a pain management study and a cancer study.

摘要

配对二分数据可能出现在临床试验中,如前后测试比较研究和等效性试验。在许多医学期刊中,报告参数估计值(如比值比、率差和率比)及其相关的置信区间估计值成为必要。长期以来,人们已经开发出各种渐近置信区间估计器来处理相关二元比例的差异。然而,这些渐近方法在小样本中的覆盖性能可能较差。在本文中,我们研究了几种基于小样本配对数据的二项比例差异的替代置信区间估计器。具体来说,我们通过对得分检验进行反演来考虑率差的精确和近似无条件置信区间。精确无条件置信区间保证了覆盖概率,如果需要严格控制覆盖概率,建议使用。然而,精确方法往往过于保守且计算要求高。我们的实证结果表明,基于得分检验反演的近似无条件得分置信区间估计器即使在小样本设计中也表现出相当好的覆盖性能,而且它们在计算上相对容易实现。我们用疼痛管理研究和癌症研究中的实际例子来说明这些方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验