Suppr超能文献

动力学模型揭示了重组酿酒酵母从木糖生产乙醇的当前生产限制。

Kinetic modelling reveals current limitations in the production of ethanol from xylose by recombinant Saccharomyces cerevisiae.

机构信息

Department of Applied Microbiology, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden.

出版信息

Metab Eng. 2011 Sep;13(5):508-17. doi: 10.1016/j.ymben.2011.05.005. Epub 2011 May 27.

Abstract

Saccharomyces cerevisiae lacks the ability to ferment the pentose sugar xylose that is the second most abundant sugar in nature. Therefore two different xylose catabolic pathways have been heterologously expressed in S. cerevisiae. Whereas the xylose reductase (XR)-xylitol dehydrogenase (XDH) pathway leads to the production of the by-product xylitol, the xylose isomerase (XI) pathway results in significantly lower xylose consumption. In this study, kinetic models including the reactions ranging from xylose transport into the cell to the phosphorylation of xylulose to xylulose 5-P were constructed. They were used as prediction tools for the identification of putative targets for the improvement of xylose utilization in S. cerevisiae strains engineered for higher level of the non-oxidative pentose phosphate pathway (PPP) enzymes, higher xylulokinase and inactivated GRE3 gene encoding an endogenous NADPH-dependent aldose reductase. For both pathways, the in silico analyses identified a need for even higher xylulokinase (XK) activity. In a XR-XDH strain expressing an integrated copy of the Escherichia coli XK encoding gene xylB about a six-fold reduction of xylitol formation was confirmed under anaerobic conditions. Similarly overexpression of the xylB gene in a XI strain increased the aerobic growth rate on xylose by 21%. In contrast to the in silico predictions, the aerobic growth also increased 24% when the xylose transporter gene GXF1 from Candida intermedia was overexpressed together with xylB in the XI strain. Under anaerobic conditions, the XI strains overexpressing xylB gene and the combination of xylB and GFX1 genes consumed 27% and 37% more xylose than the control strain.

摘要

酿酒酵母缺乏发酵自然界中第二丰富的糖——木糖的能力。因此,两种不同的木糖分解代谢途径已被异源表达在酿酒酵母中。木糖还原酶(XR)-木糖醇脱氢酶(XDH)途径导致副产物木糖醇的产生,而木糖异构酶(XI)途径导致木糖消耗显著降低。在这项研究中,构建了包括从木糖进入细胞到木酮糖磷酸化的反应在内的动力学模型。它们被用作预测工具,以鉴定可能的靶点,从而提高工程化酿酒酵母菌株对木糖的利用,这些菌株具有更高水平的非氧化戊糖磷酸途径(PPP)酶、更高的木酮糖激酶和失活的编码内源性 NADPH 依赖醛还原酶的 GRE3 基因。对于这两种途径,计算机分析都确定需要更高的木酮糖激酶(XK)活性。在表达大肠杆菌 XK 编码基因 xylB 整合拷贝的 XR-XDH 菌株中,在厌氧条件下证实木糖醇的形成减少了约六倍。同样,在 XI 菌株中过表达 xylB 基因,可将好氧生长速率提高 21%,从而提高对木糖的利用。与计算机预测相反,当在 XI 菌株中与 xylB 基因一起过表达中间假丝酵母的木糖转运基因 GXF1 时,好氧生长也增加了 24%。在厌氧条件下,过表达 xylB 基因和 xylB 和 GFX1 基因组合的 XI 菌株比对照菌株消耗了 27%和 37%更多的木糖。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验