Bueno João Gabriel Ribeiro, Borelli Guilherme, Corrêa Thamy Lívia Ribeiro, Fiamenghi Mateus Bernabe, José Juliana, de Carvalho Murilo, de Oliveira Leandro Cristante, Pereira Gonçalo A G, Dos Santos Leandro Vieira
Brazilian Biorenewable National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo 13083-100 Brazil.
Genetics and Molecular Biology Graduate Program, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil.
Biotechnol Biofuels. 2020 Aug 14;13:145. doi: 10.1186/s13068-020-01782-0. eCollection 2020.
The need to restructure the world's energy matrix based on fossil fuels and mitigate greenhouse gas emissions stimulated the development of new biobased technologies for renewable energy. One promising and cleaner alternative is the use of second-generation (2G) fuels, produced from lignocellulosic biomass sugars. A major challenge on 2G technologies establishment is the inefficient assimilation of the five-carbon sugar xylose by engineered strains, increasing fermentation time. The uptake of xylose across the plasma membrane is a critical limiting step and the budding yeast is not designed with a broad transport system and regulatory mechanisms to assimilate xylose in a wide range of concentrations present in 2G processes.
Assessing diverse microbiomes such as the digestive tract of plague insects and several decayed lignocellulosic biomasses, we isolated several yeast species capable of using xylose. Comparative fermentations selected the yeast as a potential source of high-affinity transporters. Comparative genomic analysis elects four potential xylose transporters whose properties were evaluated in the transporter null EBY.VW4000 strain carrying the xylose-utilizing pathway integrated into the genome. While the traditional xylose transporter Gxf1 allows an improved growth at lower concentrations (10 g/L), strains containing Cs3894 and Cs4130 show opposite responses with superior xylose uptake at higher concentrations (up to 50 g/L). Docking and normal mode analysis of Cs4130 and Gxf1 variants pointed out important residues related to xylose transport, identifying key differences regarding substrate translocation comparing both transporters.
Considering that xylose concentrations in second-generation hydrolysates can reach high values in several designed processes, Cs4130 is a promising novel candidate for xylose uptake. Here, we demonstrate a novel eukaryotic molecular transporter protein that improves growth at high xylose concentrations and can be used as a promising target towards engineering efficient pentose utilization in yeast.
基于化石燃料重组世界能源矩阵并减少温室气体排放的需求,推动了用于可再生能源的新型生物基技术的发展。一种有前景且更清洁的替代方案是使用由木质纤维素生物质糖生产的第二代(2G)燃料。2G技术建立面临的一个主要挑战是工程菌株对五碳糖木糖的同化效率低下,这增加了发酵时间。木糖跨质膜的摄取是一个关键的限制步骤,而酿酒酵母没有设计出广泛的转运系统和调节机制来同化2G工艺中存在的各种浓度的木糖。
通过评估多种微生物群落,如鼠疫昆虫的消化道和几种腐烂的木质纤维素生物质,我们分离出了几种能够利用木糖的酵母物种。比较发酵筛选出酿酒酵母作为高亲和力转运蛋白的潜在来源。比较基因组分析选出了四种潜在的木糖转运蛋白,并在整合了木糖利用途径的基因组的转运蛋白缺失的EBY.VW4000菌株中评估了它们的特性。虽然传统的木糖转运蛋白Gxf1在较低浓度(10 g/L)下能促进生长,但含有Cs3894和Cs4130的菌株表现出相反的反应,在较高浓度(高达50 g/L)下具有更好的木糖摄取能力。对Cs4130和Gxf1变体的对接和正常模式分析指出了与木糖转运相关的重要残基,确定了两种转运蛋白在底物转运方面的关键差异。
考虑到在几个设计工艺中第二代水解产物中的木糖浓度可以达到很高的值,Cs4130是木糖摄取的一个有前景的新候选者。在这里,我们展示了一种新型真核分子转运蛋白,它能在高木糖浓度下促进生长,并可作为工程改造酵母中高效戊糖利用的一个有前景的靶点。