Suppr超能文献

快速、器官特异性的转录反应对光照调控双子叶幼苗的光形态建成发育。

Rapid, organ-specific transcriptional responses to light regulate photomorphogenic development in dicot seedlings.

机构信息

Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.

出版信息

Plant Physiol. 2011 Aug;156(4):2124-40. doi: 10.1104/pp.111.179416. Epub 2011 Jun 7.

Abstract

The dicotyledon seedling undergoes organ-specific photomorphogenic development when exposed to light. The cotyledons open and expand, the apical hook opens, and the hypocotyl ceases to elongate. Using the large and easily dissected seedlings of soybean (Glycine max 'Williams 82'), we show that genes involved in photosynthesis and its regulation dominate transcripts specific to the cotyledon, even in etiolated seedlings. Genes for cell wall biosynthesis and metabolism are expressed at higher levels in the hypocotyl, while examination of genes expressed at higher levels in the hook region (including the shoot apical meristem) reveals genes involved in cell division and protein turnover. The early transcriptional events in these three organs in response to a 1-h treatment of far-red light are highly distinctive. Not only are different regulatory genes rapidly regulated by light in each organ, but the early-responsive genes in each organ contain a distinctive subset of known light-responsive cis-regulatory elements. We detected specific light-induced gene expression for the root phototropism gene RPT2 in the apical hook and also phenotypes in Arabidopsis (Arabidopsis thaliana) rpt2 mutants demonstrating that the gene is necessary for normal photomorphogenesis in the seedling apex. Significantly, expression of the RPT2 promoter fused to a β-glucuronidase reporter gene shows differential expression across the hook region. We conclude that organ-specific, light-responsive transcriptional networks are active early in photomorphogenesis in the aerial parts of dicotyledon seedlings.

摘要

当暴露在光线下时,双子叶幼苗经历器官特异性的光形态建成发育。子叶张开和扩展,顶端钩打开,下胚轴停止伸长。使用大豆(Glycine max 'Williams 82')的大型且易于解剖的幼苗,我们表明参与光合作用及其调节的基因主导子叶特有的转录本,即使在黄化幼苗中也是如此。细胞壁生物合成和代谢的基因在胚轴中表达水平更高,而在钩区域(包括茎尖分生组织)中表达水平更高的基因的检查揭示了参与细胞分裂和蛋白质周转的基因。这三个器官在对远红光 1 小时处理的早期转录事件高度独特。不仅每个器官中的不同调节基因都被光快速调节,而且每个器官中的早期响应基因都包含一组独特的已知光响应顺式调控元件。我们在顶端钩中检测到根向光性基因 RPT2 的特定光诱导基因表达,并且在拟南芥(Arabidopsis thaliana)rpt2 突变体中也表现出表型,表明该基因是幼苗顶端正常光形态建成所必需的。重要的是,与 β-葡萄糖醛酸酶报告基因融合的 RPT2 启动子的表达在钩区域表现出差异表达。我们得出结论,器官特异性、光响应的转录网络在双子叶幼苗地上部分的光形态建成早期是活跃的。

相似文献

引用本文的文献

本文引用的文献

3
Genome sequence of the palaeopolyploid soybean.古多倍体大豆基因组序列。
Nature. 2010 Jan 14;463(7278):178-83. doi: 10.1038/nature08670.
4
Transposing phytochrome into the nucleus.将光敏色素转运至细胞核内。
Trends Plant Sci. 2008 Nov;13(11):596-601. doi: 10.1016/j.tplants.2008.08.007. Epub 2008 Sep 27.
6
The phytochrome red/far-red photoreceptor superfamily.光敏色素红/远红光光受体超家族。
Genome Biol. 2008;9(8):230. doi: 10.1186/gb-2008-9-8-230. Epub 2008 Aug 28.
8
Light signaling: back to space.光信号传导:回归太空。
Trends Plant Sci. 2008 Mar;13(3):108-14. doi: 10.1016/j.tplants.2007.12.003. Epub 2008 Feb 14.
9
Paths through the phytochrome network.通过光敏色素网络的途径。
Plant Cell Environ. 2008 May;31(5):667-78. doi: 10.1111/j.1365-3040.2008.01794.x. Epub 2008 Feb 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验