Suppr超能文献

用于高分辨率神经受体 PET 成像的单调和新型非单调梯度上升重建算法的性能。

The performance of monotonic and new non-monotonic gradient ascent reconstruction algorithms for high-resolution neuroreceptor PET imaging.

机构信息

Imaging, Proteomics and Genomics, MAHSC, University of Manchester, Wolfson Molecular Imaging Centre, Manchester, UK.

出版信息

Phys Med Biol. 2011 Jul 7;56(13):3895-917. doi: 10.1088/0031-9155/56/13/010. Epub 2011 Jun 8.

Abstract

Iterative expectation maximization (EM) techniques have been extensively used to solve maximum likelihood (ML) problems in positron emission tomography (PET) image reconstruction. Although EM methods offer a robust approach to solving ML problems, they usually suffer from slow convergence rates. The ordered subsets EM (OSEM) algorithm provides significant improvements in the convergence rate, but it can cycle between estimates converging towards the ML solution of each subset. In contrast, gradient-based methods, such as the recently proposed non-monotonic maximum likelihood (NMML) and the more established preconditioned conjugate gradient (PCG), offer a globally convergent, yet equally fast, alternative to OSEM. Reported results showed that NMML provides faster convergence compared to OSEM; however, it has never been compared to other fast gradient-based methods, like PCG. Therefore, in this work we evaluate the performance of two gradient-based methods (NMML and PCG) and investigate their potential as an alternative to the fast and widely used OSEM. All algorithms were evaluated using 2D simulations, as well as a single [(11)C]DASB clinical brain dataset. Results on simulated 2D data show that both PCG and NMML achieve orders of magnitude faster convergence to the ML solution compared to MLEM and exhibit comparable performance to OSEM. Equally fast performance is observed between OSEM and PCG for clinical 3D data, but NMML seems to perform poorly. However, with the addition of a preconditioner term to the gradient direction, the convergence behaviour of NMML can be substantially improved. Although PCG is a fast convergent algorithm, the use of a (bent) line search increases the complexity of the implementation, as well as the computational time involved per iteration. Contrary to previous reports, NMML offers no clear advantage over OSEM or PCG, for noisy PET data. Therefore, we conclude that there is little evidence to replace OSEM as the algorithm of choice for many applications, especially given that in practice convergence is often not desired for algorithms seeking ML estimates.

摘要

迭代期望最大化(EM)技术已被广泛用于解决正电子发射断层扫描(PET)图像重建中的最大似然(ML)问题。尽管 EM 方法为解决 ML 问题提供了一种稳健的方法,但它们通常存在收敛速度慢的问题。有序子集 EM(OSEM)算法在收敛速度方面提供了显著的改进,但它可能会在每个子集的 ML 解之间进行循环。相比之下,基于梯度的方法,如最近提出的非单调最大似然(NMML)和更为成熟的预条件共轭梯度(PCG),为 OSEM 提供了一种全局收敛但同样快速的替代方法。已报道的结果表明,NMML 比 OSEM 具有更快的收敛速度;然而,它从未与其他快速基于梯度的方法(如 PCG)进行比较。因此,在这项工作中,我们评估了两种基于梯度的方法(NMML 和 PCG)的性能,并研究了它们作为快速且广泛使用的 OSEM 的替代方法的潜力。所有算法都使用 2D 模拟以及单个 [11C]DASB 临床脑数据集进行了评估。在 2D 模拟数据上的结果表明,与 MLEM 相比,PCG 和 NMML 都实现了对 ML 解的数量级更快的收敛速度,并且与 OSEM 的性能相当。对于临床 3D 数据,OSEM 和 PCG 之间也观察到了同样快速的性能,但 NMML 的性能似乎较差。然而,通过在梯度方向上添加一个预条件项,可以大大改善 NMML 的收敛行为。虽然 PCG 是一种快速收敛的算法,但使用(弯曲)线搜索会增加实现的复杂性以及每次迭代所涉及的计算时间。与之前的报告相反,对于噪声 PET 数据,NMML 并没有比 OSEM 或 PCG 明显的优势。因此,我们得出的结论是,几乎没有证据表明要取代 OSEM 作为许多应用的首选算法,尤其是考虑到在实践中,对于寻求 ML 估计的算法来说,通常不希望收敛。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验