文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

气道平滑肌部分长度适应模型中的肌球蛋白丝聚合和解聚。

Myosin filament polymerization and depolymerization in a model of partial length adaptation in airway smooth muscle.

机构信息

Institute of Biomedical Technologies, Auckland University of Technology, Auckland, New Zealand.

出版信息

J Appl Physiol (1985). 2011 Sep;111(3):735-42. doi: 10.1152/japplphysiol.00114.2011. Epub 2011 Jun 9.


DOI:10.1152/japplphysiol.00114.2011
PMID:21659490
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3290098/
Abstract

Length adaptation in airway smooth muscle (ASM) is attributed to reorganization of the cytoskeleton, and in particular the contractile elements. However, a constantly changing lung volume with tidal breathing (hence changing ASM length) is likely to restrict full adaptation of ASM for force generation. There is likely to be continuous length adaptation of ASM between states of incomplete or partial length adaption. We propose a new model that assimilates findings on myosin filament polymerization/depolymerization, partial length adaptation, isometric force, and shortening velocity to describe this continuous length adaptation process. In this model, the ASM adapts to an optimal force-generating capacity in a repeating cycle of events. Initially the myosin filament, shortened by prior length changes, associates with two longer actin filaments. The actin filaments are located adjacent to the myosin filaments, such that all myosin heads overlap with actin to permit maximal cross-bridge cycling. Since in this model the actin filaments are usually longer than myosin filaments, the excess length of the actin filament is located randomly with respect to the myosin filament. Once activated, the myosin filament elongates by polymerization along the actin filaments, with the growth limited by the overlap of the actin filaments. During relaxation, the myosin filaments dissociate from the actin filaments, and then the cycle repeats. This process causes a gradual adaptation of force and instantaneous adaptation of shortening velocity. Good agreement is found between model simulations and the experimental data depicting the relationship between force development, myosin filament density, or shortening velocity and length.

摘要

气道平滑肌(ASM)的长度适应归因于细胞骨架的重组,特别是收缩元件。然而,潮气量呼吸引起的不断变化的肺容积(因此改变 ASM 长度)可能会限制 ASM 产生力的完全适应。在不完全或部分长度适应的状态之间,ASM 可能会持续进行长度适应。我们提出了一个新的模型,该模型将肌球蛋白丝聚合/解聚、部分长度适应、等长力和缩短速度的发现结合起来,以描述这种连续的长度适应过程。在这个模型中,ASM 在一个重复的事件循环中适应最佳的力产生能力。最初,由先前的长度变化缩短的肌球蛋白丝与两个较长的肌动蛋白丝结合。肌动蛋白丝位于肌球蛋白丝的旁边,使得所有的肌球蛋白头部与肌动蛋白重叠,以允许最大的横桥循环。由于在这个模型中,肌动蛋白丝通常比肌球蛋白丝长,所以肌动蛋白丝的多余长度相对于肌球蛋白丝是随机定位的。一旦被激活,肌球蛋白丝通过沿肌动蛋白丝聚合而伸长,生长受到肌动蛋白丝重叠的限制。在松弛过程中,肌球蛋白丝从肌动蛋白丝上解离,然后循环重复。这个过程导致力的逐渐适应和缩短速度的瞬间适应。模型模拟与描述力发展、肌球蛋白丝密度或缩短速度与长度之间关系的实验数据之间存在很好的一致性。

相似文献

[1]
Myosin filament polymerization and depolymerization in a model of partial length adaptation in airway smooth muscle.

J Appl Physiol (1985). 2011-6-9

[2]
The kinetics underlying the velocity of smooth muscle myosin filament sliding on actin filaments in vitro.

J Biol Chem. 2014-7-25

[3]
Mechanism of partial adaptation in airway smooth muscle after a step change in length.

J Appl Physiol (1985). 2007-8

[4]
Structure-function correlation in airway smooth muscle adapted to different lengths.

Am J Physiol Cell Physiol. 2003-8

[5]
Thin-filament linked regulation of smooth muscle myosin.

J Muscle Res Cell Motil. 1999-5

[6]
X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction.

Biophys J. 1994-12

[7]
Length adaptation of airway smooth muscle.

Proc Am Thorac Soc. 2008-1-1

[8]
Smooth muscle function and myosin polymerization.

J Cell Sci. 2017-8-1

[9]
The load dependence and the force-velocity relation in intact myosin filaments from skeletal and smooth muscles.

Am J Physiol Cell Physiol. 2019-10-16

[10]
The role of contractile unit reorganization in force generation in airway smooth muscle.

Math Med Biol. 2014-6

引用本文的文献

[1]
Effects of TNFα on Dynamic Cytosolic Ca and Force Responses to Muscarinic Stimulation in Airway Smooth Muscle.

Front Physiol. 2021-7-30

[2]
Dynamic cytosolic Ca and force responses to muscarinic stimulation in airway smooth muscle.

Am J Physiol Lung Cell Mol Physiol. 2021-7-1

[3]
Mechanisms underlying TNFα-induced enhancement of force generation in airway smooth muscle.

Physiol Rep. 2019-9

[4]
TNFα enhances force generation in airway smooth muscle.

Am J Physiol Lung Cell Mol Physiol. 2017-6-1

[5]
Prestretched airway smooth muscle response to length oscillation.

Physiol Rep. 2017-1

[6]
Airway Bistability Is Modulated by Smooth Muscle Dynamics and Length-Tension Characteristics.

Biophys J. 2016-11-15

[7]
Systems physiology of the airways in health and obstructive pulmonary disease.

Wiley Interdiscip Rev Syst Biol Med. 2016-9

[8]
Modeling the impairment of airway smooth muscle force by stretch.

J Appl Physiol (1985). 2015-3-15

[9]
Interaction between endoplasmic/sarcoplasmic reticulum stress (ER/SR stress), mitochondrial signaling and Ca(2+) regulation in airway smooth muscle (ASM).

Can J Physiol Pharmacol. 2015-2

[10]
Modelling airway smooth muscle passive length adaptation via thick filament length distributions.

J Theor Biol. 2013-5-28

本文引用的文献

[1]
Could an increase in airway smooth muscle shortening velocity cause airway hyperresponsiveness?

Am J Physiol Lung Cell Mol Physiol. 2010-10-22

[2]
Logarithmic superposition of force response with rapid length changes in relaxed porcine airway smooth muscle.

Am J Physiol Lung Cell Mol Physiol. 2010-9-3

[3]
Cytoskeletal mechanics in airway smooth muscle cells.

Respir Physiol Neurobiol. 2008-11-30

[4]
Length adaptation of airway smooth muscle.

Proc Am Thorac Soc. 2008-1-1

[5]
Mechanism of partial adaptation in airway smooth muscle after a step change in length.

J Appl Physiol (1985). 2007-8

[6]
Filament lattice changes in smooth muscle assessed using birefringence.

Can J Physiol Pharmacol. 2005-10

[7]
Smooth muscle length adaptation and actin filament length: a network model of the cytoskeletal dysregulation.

Can J Physiol Pharmacol. 2005-10

[8]
Myosin filament assembly in an ever-changing myofilament lattice of smooth muscle.

Am J Physiol Cell Physiol. 2005-12

[9]
Length adaptation of airway smooth muscle: a stochastic model of cytoskeletal dynamics.

J Appl Physiol (1985). 2005-12

[10]
'Sarcomeres' of smooth muscle: functional characteristics and ultrastructural evidence.

J Cell Sci. 2005-6-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索