文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过肌球蛋白粗丝长度分布模拟气道平滑肌被动长度适应。

Modelling airway smooth muscle passive length adaptation via thick filament length distributions.

机构信息

Department of Mathematics, University of Auckland, New Zealand.

出版信息

J Theor Biol. 2013 Sep 21;333:102-8. doi: 10.1016/j.jtbi.2013.05.013. Epub 2013 May 28.


DOI:10.1016/j.jtbi.2013.05.013
PMID:23721681
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3760774/
Abstract

We present a new model of airway smooth muscle (ASM), which surrounds and constricts every airway in the lung and thus plays a central role in the airway constriction associated with asthma. This new model of ASM is based on an extension of sliding filament/crossbridge theory, which explicitly incorporates the length distribution of thick sliding filaments to account for a phenomenon known as dynamic passive length adaptation; the model exhibits good agreement with experimental data for ASM force-length behaviour across multiple scales. Principally these are (nonlinear) force-length loops at short timescales (seconds), parabolic force-length curves at medium timescales (minutes) and length adaptation at longer timescales. This represents a significant improvement on the widely-used crossbridge models which work so well in or near the isometric regime, and may have significant implications for studies which rely on crossbridge or other dynamic airway smooth muscle models, and thus both airway and lung dynamics.

摘要

我们提出了一种新的气道平滑肌(ASM)模型,它环绕并收缩肺部的每一个气道,因此在与哮喘相关的气道收缩中起着核心作用。这种新的 ASM 模型基于滑丝/交联桥理论的扩展,明确纳入了粗滑丝的长度分布,以解释一种称为动态被动长度适应的现象;该模型与跨多个尺度的 ASM 力-长度行为的实验数据吻合良好。主要的是,这些是在短时间尺度(秒)下的(非线性)力-长度环、在中等时间尺度(分钟)下的抛物线力-长度曲线以及在更长时间尺度下的长度适应。这与在等长状态下表现出色的广泛使用的交联桥模型相比有了显著的改进,并且可能对依赖交联桥或其他动态气道平滑肌模型的研究具有重要意义,因此也对气道和肺动力学具有重要意义。

相似文献

[1]
Modelling airway smooth muscle passive length adaptation via thick filament length distributions.

J Theor Biol. 2013-5-28

[2]
Myosin filament polymerization and depolymerization in a model of partial length adaptation in airway smooth muscle.

J Appl Physiol (1985). 2011-6-9

[3]
Emergence of airway smooth muscle mechanical behavior through dynamic reorganization of contractile units and force transmission pathways.

J Appl Physiol (1985). 2014-4-15

[4]
Length adaptation of airway smooth muscle.

Proc Am Thorac Soc. 2008-1-1

[5]
Increase in passive stiffness at reduced airway smooth muscle length: potential impact on airway responsiveness.

Am J Physiol Lung Cell Mol Physiol. 2009-12-11

[6]
Modeling the oscillation dynamics of activated airway smooth muscle strips.

Am J Physiol Lung Cell Mol Physiol. 2005-11

[7]
Perturbed equilibria of myosin binding in airway smooth muscle: bond-length distributions, mechanics, and ATP metabolism.

Biophys J. 2000-11

[8]
Myosin thick filament lability induced by mechanical strain in airway smooth muscle.

J Appl Physiol (1985). 2001-5

[9]
A continuous-binding cross-linker model for passive airway smooth muscle.

Biophys J. 2010-11-17

[10]
A maturational model for the study of airway smooth muscle adaptation to mechanical oscillation.

Can J Physiol Pharmacol. 2005-10

引用本文的文献

[1]
A Distribution-Moment Approximation for Coupled Dynamics of the Airway Wall and Airway Smooth Muscle.

Biophys J. 2018-1-23

[2]
Airway Bistability Is Modulated by Smooth Muscle Dynamics and Length-Tension Characteristics.

Biophys J. 2016-11-15

[3]
Phenotype, endotype and patient-specific computational modelling for optimal treatment design in asthma.

Drug Discov Today Dis Models. 2015

[4]
Modeling the impairment of airway smooth muscle force by stretch.

J Appl Physiol (1985). 2015-3-15

[5]
A biomechanical model for fluidization of cells under dynamic strain.

Biophys J. 2015-1-6

[6]
Force maintenance and myosin filament assembly regulated by Rho-kinase in airway smooth muscle.

Am J Physiol Lung Cell Mol Physiol. 2014-10-10

[7]
Emergence of airway smooth muscle mechanical behavior through dynamic reorganization of contractile units and force transmission pathways.

J Appl Physiol (1985). 2014-4-15

本文引用的文献

[1]
The role of contractile unit reorganization in force generation in airway smooth muscle.

Math Med Biol. 2014-6

[2]
Myosin filament polymerization and depolymerization in a model of partial length adaptation in airway smooth muscle.

J Appl Physiol (1985). 2011-6-9

[3]
Time course of isotonic shortening and the underlying contraction mechanism in airway smooth muscle.

J Appl Physiol (1985). 2011-6-2

[4]
Emergence of airway smooth muscle functions related to structural malleability.

J Appl Physiol (1985). 2010-12-2

[5]
A continuous-binding cross-linker model for passive airway smooth muscle.

Biophys J. 2010-11-17

[6]
A multiscale, spatially distributed model of asthmatic airway hyper-responsiveness.

J Theor Biol. 2010-8-4

[7]
Modeling the dynamics of airway constriction: effects of agonist transport and binding.

J Appl Physiol (1985). 2010-8

[8]
Transient oscillatory force-length behavior of activated airway smooth muscle.

Am J Physiol Lung Cell Mol Physiol. 2009-8

[9]
Length adaptation of airway smooth muscle.

Proc Am Thorac Soc. 2008-1-1

[10]
A mathematical model of airway and pulmonary arteriole smooth muscle.

Biophys J. 2008-3-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索