Suppr超能文献

利用 MEG 绘制接受性和表达性语言的关键枢纽:与 fMRI 的比较。

Mapping critical hubs of receptive and expressive language using MEG: A comparison against fMRI.

机构信息

Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA; Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, USA; Department of Neurology, Medical College of Wisconsin, Milwaukee, USA.

Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA; Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, USA; Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA.

出版信息

Neuroimage. 2019 Nov 1;201:116029. doi: 10.1016/j.neuroimage.2019.116029. Epub 2019 Jul 17.

Abstract

The complexity of the widespread language network makes it challenging for accurate localization and lateralization. Using large-scale connectivity and graph-theoretical analyses of task-based magnetoencephalography (MEG), we aimed to provide robust representations of receptive and expressive language processes, comparable with spatial profiles of corresponding functional magnetic resonance imaging (fMRI). We examined MEG and fMRI data from 12 healthy young adults (age 20-37 years) completing covert auditory word-recognition task (WRT) and covert auditory verb-generation task (VGT). For MEG language mapping, broadband (3-30 Hz) beamformer sources were estimated, voxel-level connectivity was quantified using phase locking value, and highly connected hubs were characterized using eigenvector centrality graph measure. fMRI data were analyzed using a classic general linear model approach. A laterality index (LI) was computed for 20 language-specific frontotemporal regions for both MEG and fMRI. MEG network analysis showed bilateral and symmetrically distributed hubs within the left and right superior temporal gyrus (STG) during WRT and predominant hubs in left inferior prefrontal gyrus (IFG) during VGT. MEG and fMRI localization maps showed high correlation values within frontotemporal regions during WRT and VGT (r = 0.63, 0.74, q < 0.05, respectively). Despite good concordance in localization, notable discordances were observed in lateralization between MEG and fMRI. During WRT, MEG favored a left-hemispheric dominance of left STG (LI = 0.25 ± 0.22) whereas fMRI supported a bilateral representation of STG (LI = 0.08 ± 0.2). Laterality of MEG and fMRI during VGT consistently showed a strong asymmetry in left IFG regions (MEG-LI = 0.45 ± 0.35 and fMRI-LI = 0.46 ± 0.13). Our results demonstrate the utility of a large-scale connectivity and graph theoretical analyses for robust identification of language-specific regions. MEG hubs are in great agreement with the literature in revealing with canonical and extra-canonical language sites, thus providing additional support for the underlying topological organization of receptive and expressive language cortices. Discordances in lateralization may emphasize the need for multimodal integration of MEG and fMRI to obtain an excellent predictive value in a heterogeneous healthy population and patients with neurosurgical conditions.

摘要

广泛语言网络的复杂性使得其定位和侧化变得极具挑战性。本研究使用基于任务的脑磁图(MEG)的大规模连通性和图论分析,旨在提供与相应功能磁共振成像(fMRI)空间分布相当的语言处理过程的稳健表示。我们检查了 12 名健康年轻成年人(年龄 20-37 岁)的 MEG 和 fMRI 数据,他们完成了隐蔽听觉词识别任务(WRT)和隐蔽听觉动词生成任务(VGT)。对于 MEG 语言映射,估计了宽带(3-30Hz)波束形成器源,使用锁相值量化了体素水平连通性,并使用特征向量中心度图测度来描述高连通性中心。fMRI 数据使用经典的一般线性模型方法进行分析。对于 MEG 和 fMRI,为 20 个特定语言的额颞叶区域计算了侧化指数(LI)。MEG 网络分析显示,在 WRT 期间,左侧和右侧上颞回(STG)内存在双侧和对称分布的中心,而在 VGT 期间则存在左侧额下回(IFG)的主要中心。MEG 和 fMRI 定位图显示,在 WRT 和 VGT 期间,额颞叶区域内的相关性值较高(r=0.63,0.74,q<0.05)。尽管 MEG 和 fMRI 在定位方面具有很好的一致性,但在侧化方面存在明显的差异。在 WRT 期间,MEG 倾向于左 STG 的左半球优势(LI=0.25±0.22),而 fMRI 支持 STG 的双侧表示(LI=0.08±0.2)。在 VGT 期间,MEG 和 fMRI 的侧化始终显示左侧 IFG 区域的强烈不对称(MEG-LI=0.45±0.35 和 fMRI-LI=0.46±0.13)。我们的研究结果表明,大规模连通性和图论分析对于稳健识别语言特异性区域非常有用。MEG 中心与文献中揭示的经典和非经典语言部位非常吻合,从而为接受性和表达性语言皮质的拓扑组织提供了额外的支持。侧化的差异可能强调需要对 MEG 和 fMRI 进行多模态整合,以在异质健康人群和神经外科条件的患者中获得优异的预测值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验