Suppr超能文献

群体药效动力学实验中离散数据反应的群体 Fisher 信息矩阵和最优设计。

Population Fisher information matrix and optimal design of discrete data responses in population pharmacodynamic experiments.

机构信息

Centre for Applied Pharmacokinetic Research, The University of Manchester, Oxford Road, Manchester, UK.

出版信息

J Pharmacokinet Pharmacodyn. 2011 Aug;38(4):449-69. doi: 10.1007/s10928-011-9203-7. Epub 2011 Jun 10.

Abstract

In the recent years, interest in the application of experimental design theory to population pharmacokinetic (PK) and pharmacodynamic (PD) experiments has increased. The aim is to improve the efficiency and the precision with which parameters are estimated during data analysis and sometimes to increase the power and reduce the sample size required for hypothesis testing. The population Fisher information matrix (PFIM) has been described for uniresponse and multiresponse population PK experiments for design evaluation and optimisation. Despite these developments and availability of tools for optimal design of population PK and PD experiments much of the effort has been focused on repeated continuous variable measurements with less work being done on repeated discrete type measurements. Discrete data arise mainly in PDs e.g. ordinal, nominal, dichotomous or count measurements. This paper implements expressions for the PFIM for repeated ordinal, dichotomous and count measurements based on analysis by a mixed-effects modelling technique. Three simulation studies were used to investigate the performance of the expressions. Example 1 is based on repeated dichotomous measurements, Example 2 is based on repeated count measurements and Example 3 is based on repeated ordinal measurements. Data simulated in MATLAB were analysed using NONMEM (Laplace method) and the glmmML package in R (Laplace and adaptive Gauss-Hermite quadrature methods). The results obtained for Examples 1 and 2 showed good agreement between the relative standard errors obtained using the PFIM and simulations. The results obtained for Example 3 showed the importance of sampling at the most informative time points. Implementation of these expressions will provide the opportunity for efficient design of population PD experiments that involve discrete type data through design evaluation and optimisation.

摘要

近年来,人们对将实验设计理论应用于群体药代动力学(PK)和药效动力学(PD)实验的兴趣日益增加。其目的是提高数据分析过程中参数估计的效率和精度,有时还可以提高假设检验的功效并减少所需的样本量。群体 Fisher 信息矩阵(PFIM)已被用于单反应和多反应群体 PK 实验的设计评估和优化。尽管已经有了这些发展和用于优化群体 PK 和 PD 实验设计的工具,但大部分工作都集中在重复的连续变量测量上,而对重复的离散型测量的研究较少。离散数据主要出现在 PD 中,例如有序、名义、二分类或计数测量。本文基于混合效应建模技术的分析,实现了重复有序、二分类和计数测量的 PFIM 表达式。使用了三个模拟研究来研究这些表达式的性能。实例 1 基于重复的二分类测量,实例 2 基于重复的计数测量,实例 3 基于重复的有序测量。在 MATLAB 中模拟的数据使用 NONMEM(拉普拉斯方法)和 R 中的 glmmML 包(拉普拉斯和自适应高斯-赫尔墨特求积方法)进行分析。实例 1 和 2 的结果表明,使用 PFIM 和模拟获得的相对标准误差之间具有良好的一致性。实例 3 的结果表明,在最具信息性的时间点进行采样的重要性。这些表达式的实现将为涉及离散型数据的群体 PD 实验的有效设计提供机会,可通过设计评估和优化来实现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验