Bazzoli Caroline, Retout Sylvie, Mentré France
INSERM U738, 16 rue Henri Huchard, Paris, France.
Stat Med. 2009 Jun 30;28(14):1940-56. doi: 10.1002/sim.3573.
We focus on the Fisher information matrix used for design evaluation and optimization in nonlinear mixed effects multiple response models. We evaluate the appropriateness of its expression computed by linearization as proposed for a single response model. Using a pharmacokinetic-pharmacodynamic (PKPD) example, we first compare the computation of the Fisher information matrix with approximation to one derived from the observed matrix on a large simulation using the stochastic approximation expectation-maximization algorithm (SAEM). The expression of the Fisher information matrix for multiple responses is also evaluated by comparison with the empirical information obtained through a replicated simulation study using the first-order linearization estimation methods implemented in the NONMEM software (first-order (FO), first-order conditional estimate (FOCE)) and the SAEM algorithm in the MONOLIX software. The predicted errors given by the approximated information matrix are close to those given by the information matrix obtained without linearization using SAEM and to the empirical ones obtained with FOCE and SAEM. The simulation study also illustrates the accuracy of both FOCE and SAEM estimation algorithms when jointly modelling multiple responses and the major limitations of the FO method. This study highlights the appropriateness of the approximated Fisher information matrix for multiple responses, which is implemented in PFIM 3.0, an extension of the R function PFIM dedicated to design evaluation and optimization. It also emphasizes the use of this computing tool for designing population multiple response studies, as for instance in PKPD studies or in PK studies including the modelling of the PK of a drug and its active metabolite.
我们专注于用于非线性混合效应多响应模型设计评估和优化的费舍尔信息矩阵。我们评估了如单一响应模型所提议的通过线性化计算得到的其表达式的适用性。通过一个药代动力学-药效学(PKPD)实例,我们首先在使用随机近似期望最大化算法(SAEM)的大规模模拟中,将费舍尔信息矩阵的计算结果与从观测矩阵导出的近似结果进行比较。多响应的费舍尔信息矩阵的表达式也通过与通过使用NONMEM软件中实现的一阶线性化估计方法(一阶(FO)、一阶条件估计(FOCE))以及MONOLIX软件中的SAEM算法进行的重复模拟研究获得的经验信息进行比较来评估。近似信息矩阵给出的预测误差与使用SAEM无线性化得到的信息矩阵给出的误差以及使用FOCE和SAEM得到的经验误差相近。模拟研究还说明了在联合建模多个响应时FOCE和SAEM估计算法的准确性以及FO方法的主要局限性。本研究突出了用于多响应的近似费舍尔信息矩阵的适用性,该矩阵在PFIM 3.0中实现,PFIM 3.0是R函数PFIM的一个扩展,专门用于设计评估和优化。它还强调了使用此计算工具来设计群体多响应研究,例如在PKPD研究或包括药物及其活性代谢物的药代动力学建模的PK研究中。