Suppr超能文献

连通性保护:一种网络测度分类框架。

Connectivity for conservation: a framework to classify network measures.

机构信息

Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S3G5 Canada.

出版信息

Ecology. 2011 Apr;92(4):847-58. doi: 10.1890/09-2190.1.

Abstract

Graph theory, network theory, and circuit theory are increasingly being used to quantify multiple aspects of habitat connectivity and protected areas. There has been an explosive proliferation of network (connectivity) measures, resulting in over 60 measures for ecologists to now choose from. Conceptual clarification on the ecological meaning of these network measures and their interrelationships is overdue. We present a framework that categorizes network measures based on the connectivity property that they quantify (i.e., route-specific flux, route redundancy, route vulnerability, and connected habitat area) and the structural level of the habitat network to which they apply. The framework reveals a lack of network measures in the categories of "route-specific flux among neighboring habitat patches" and "route redundancy at the level of network components." We propose that network motif and path redundancy measures can be developed to fill the gaps in these categories. The value of this framework lies in its ability to inform the selection and application of network measures. Ultimately, it will allow a better comparison among graph, network, and circuit analyses, which will improve the design and management of connected landscapes.

摘要

图论、网络理论和电路理论越来越多地被用于量化栖息地连通性和保护区的多个方面。网络(连通性)的衡量标准呈爆炸式增长,现在有超过 60 种衡量标准可供生态学家选择。这些网络衡量标准的生态意义及其相互关系的概念澄清已经是当务之急。我们提出了一个框架,根据它们所量化的连通性特性(即特定路径的通量、路径冗余、路径脆弱性和连通栖息地面积)以及它们适用的栖息地网络的结构层次,对网络衡量标准进行分类。该框架揭示了在“相邻栖息地斑块之间的特定路径通量”和“网络组件层面的路径冗余”这两个类别中缺乏网络衡量标准。我们提出可以开发网络基元和路径冗余的衡量标准来填补这些类别的空白。该框架的价值在于它能够为网络衡量标准的选择和应用提供信息。最终,它将允许对图、网络和电路分析进行更好的比较,从而改进连通景观的设计和管理。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验