Suppr超能文献

安排入院和减少床位需求的变异性。

Scheduling admissions and reducing variability in bed demand.

机构信息

Department of Mathematics, VU University Amsterdam, De Boelelaan 1081, The Netherlands.

出版信息

Health Care Manag Sci. 2011 Sep;14(3):237-49. doi: 10.1007/s10729-011-9163-x. Epub 2011 Jun 11.

Abstract

Variability in admissions and lengths of stay inherently leads to variability in bed occupancy. The aim of this paper is to analyse the impact of these sources of variability on the required amount of capacity and to determine admission quota for scheduled admissions to regulate the occupancy pattern. For the impact of variability on the required number of beds, we use a heavy-traffic limit theorem for the G/G/∞ queue yielding an intuitively appealing approximation in case the arrival process is not Poisson. Also, given a structural weekly admission pattern, we apply a time-dependent analysis to determine the mean offered load per day. This time-dependent analysis is combined with a Quadratic Programming model to determine the optimal number of elective admissions per day, such that an average desired daily occupancy is achieved. From the mathematical results, practical scenarios and guidelines are derived that can be used by hospital managers and support the method of quota scheduling. In practice, the results can be implemented by providing admission quota prescribing the target number of admissions for each patient group.

摘要

入院和住院时间的变化必然导致床位占用率的变化。本文的目的是分析这些变化源对所需容量的影响,并确定计划入院的入院配额,以调节入住模式。对于变异性对所需床位数量的影响,我们使用 G/G/∞队列的重交通限制定理,在到达过程不是泊松过程的情况下得到一个直观上吸引人的近似值。此外,对于给定的结构性每周入院模式,我们应用时变分析来确定每天的平均提供负载。这种时变分析与二次规划模型相结合,以确定每天最佳的选择性入院人数,从而达到平均预期的每日入住率。从数学结果中得出了可以由医院管理人员使用并支持配额调度方法的实际方案和准则。在实践中,这些结果可以通过提供入院配额来实施,为每个患者群体规定目标入院人数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8ea/3158339/ff81b31cfba3/10729_2011_9163_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验