Popovic Marko A, Foust Amanda J, McCormick David A, Zecevic Dejan
Department of Cellular and Molecular Physiology, Yale University School of Medicine, Department C/M Physiology, 333 Cedar Street, New Haven, CT, USA.
J Physiol. 2011 Sep 1;589(17):4167-87. doi: 10.1113/jphysiol.2011.209015. Epub 2011 Jun 13.
The spatial pattern of Na(+) channel clustering in the axon initial segment (AIS) plays a critical role in tuning neuronal computations, and changes in Na(+) channel distribution have been shown to mediate novel forms of neuronal plasticity in the axon. However, immunocytochemical data on channel distribution may not directly predict spatio-temporal characteristics of action potential initiation, and prior electrophysiological measures are either indirect (extracellular) or lack sufficient spatial resolution (intracellular) to directly characterize the spike trigger zone (TZ). We took advantage of a critical methodological improvement in the high sensitivity membrane potential imaging (V(m) imaging) technique to directly determine the location and length of the spike TZ as defined in functional terms. The results show that in mature axons of mouse cortical layer 5 pyramidal cells, action potentials initiate in a region ∼20 μm in length centred between 20 and 40 μm from the soma. From this region, the AP depolarizing wave invades initial nodes of Ranvier within a fraction of a millisecond and propagates in a saltatory fashion into axonal collaterals without failure at all physiologically relevant frequencies. We further demonstrate that, in contrast to the saltatory conduction in mature axons, AP propagation is non-saltatory (monotonic) in immature axons prior to myelination.
轴突起始段(AIS)中Na⁺通道簇集的空间模式在调节神经元计算中起着关键作用,并且已表明Na⁺通道分布的变化介导了轴突中新型的神经元可塑性形式。然而,关于通道分布的免疫细胞化学数据可能无法直接预测动作电位起始的时空特征,并且先前的电生理测量要么是间接的(细胞外),要么缺乏足够的空间分辨率(细胞内)来直接表征锋电位触发区(TZ)。我们利用了高灵敏度膜电位成像(V(m)成像)技术的一项关键方法改进,以直接确定功能定义的锋电位TZ的位置和长度。结果表明,在小鼠皮层第5层锥体细胞的成熟轴突中,动作电位在距胞体20至40μm之间中心位置约20μm长的区域起始。从该区域开始,动作电位去极化波在几毫秒内侵入郎飞氏结的初始节段,并以跳跃方式传播到轴突侧支,在所有生理相关频率下均无衰减。我们进一步证明,与成熟轴突中的跳跃传导相反,在髓鞘形成之前的未成熟轴突中,动作电位传播是非跳跃性的(单调的)。