Suppr超能文献

Atrial peptide and cGMP effects on NaCl transport in inner medullary collecting duct.

作者信息

Rocha A S, Kudo L H

机构信息

Departamento de Clínica Médica, Faculdade de Medicina, Universidade de São Paulo, Brazil.

出版信息

Am J Physiol. 1990 Aug;259(2 Pt 2):F258-68. doi: 10.1152/ajprenal.1990.259.2.F258.

Abstract

We examined the action of atrial natriuretic factor (ANF) on Na+ and Cl- transport in in vitro microperfused inner medullary collecting ducts (IMCD) isolated from rat kidneys. First we studied the isotopic fluxes at low perfusion rates (7 nl/min). The results showed that ANF added to bath decreased lumen-to-bath flux (Jl----b) of Na+ and increased Na+ bath-to-lumen flux (Jb----l). This was substantiated by a direct demonstration that ANF reduces net Na+ and Cl- absorption. The effect of ANF on Jl----b and Jb----l of Na+ was also observed at high perfusion rates (25 nl/min). The inhibitory effect of ANF was observed even when Na+ Jl----b was stimulated by vasopressin (VP). ANF (6 x 10(-11) M) added to bath increased Cl- Jb----l and generated a negative lumen potential difference (PD). These two effects were inhibited by furosemide and by the replacement of Na+ by choline and Cl- by SO4(2-) in the bath fluid. These observations are compatible with the existence of a Na(+)-Cl(-)-K+ cotransport mechanism stimulated by ANF. Moreover, the effects of guanosine 3',5'-cyclic monophosphate (cGMP) added to the bath on PD, Jl----b, and Jb----l of Na+ were similar to those observed with ANF. Thus, physiological concentrations of ANF inhibit directly Na+ and Cl- absorption in IMCD by two mechanisms, 1) by increasing cotransport Na(+)-Cl(-)-K+ secretion and 2) by inhibiting NaCl absorption both in the absence and in the presence of VP. These effects on NaCl transport appear to be mediated by cGMP.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验