Suppr超能文献

基于树的上下文模型的目标识别。

A tree-based context model for object recognition.

机构信息

Two Sigma Investments, 379 West Broadway, New York, NY 10012, USA.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2012 Feb;34(2):240-52. doi: 10.1109/TPAMI.2011.119.

Abstract

There has been a growing interest in exploiting contextual information in addition to local features to detect and localize multiple object categories in an image. A context model can rule out some unlikely combinations or locations of objects and guide detectors to produce a semantically coherent interpretation of a scene. However, the performance benefit of context models has been limited because most of the previous methods were tested on data sets with only a few object categories, in which most images contain one or two object categories. In this paper, we introduce a new data set with images that contain many instances of different object categories, and propose an efficient model that captures the contextual information among more than a hundred object categories using a tree structure. Our model incorporates global image features, dependencies between object categories, and outputs of local detectors into one probabilistic framework. We demonstrate that our context model improves object recognition performance and provides a coherent interpretation of a scene, which enables a reliable image querying system by multiple object categories. In addition, our model can be applied to scene understanding tasks that local detectors alone cannot solve, such as detecting objects out of context or querying for the most typical and the least typical scenes in a data set.

摘要

除了局部特征之外,人们对于利用上下文信息来检测和定位图像中的多个目标类别越来越感兴趣。上下文模型可以排除一些不太可能的对象组合或位置,并引导检测器对场景进行语义一致的解释。然而,上下文模型的性能优势一直受到限制,因为之前的大多数方法都是在只有少数几个目标类别的数据集上进行测试的,而这些数据集的大多数图像只包含一个或两个目标类别。在本文中,我们引入了一个新的数据集,其中包含许多不同目标类别的实例,并提出了一种使用树结构来捕捉超过一百个目标类别之间的上下文信息的高效模型。我们的模型将全局图像特征、目标类别之间的依赖关系和局部检测器的输出集成到一个概率框架中。我们证明了我们的上下文模型可以提高目标识别性能,并提供场景的连贯解释,从而通过多个目标类别实现可靠的图像查询系统。此外,我们的模型还可以应用于局部检测器无法解决的场景理解任务,例如检测上下文之外的对象或查询数据集中最典型和最不典型的场景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验