Suppr超能文献

用于图像分类的多标签主动学习算法:概述与未来展望

Multi-Label Active Learning Algorithms for Image Classification: Overview and Future Promise.

作者信息

Wu Jian, Sheng Victor S, Zhang Jing, Li Hua, Dadakova Tetiana, Swisher Christine Leon, Cui Zhiming, Zhao Pengpeng

机构信息

Soochow University, China and Human Longevity, Inc., USA.

Texas Tech University, USA.

出版信息

ACM Comput Surv. 2020 Jun;53(2). doi: 10.1145/3379504. Epub 2020 Mar 13.

Abstract

Image classification is a key task in image understanding, and multi-label image classification has become a popular topic in recent years. However, the success of multi-label image classification is closely related to the way of constructing a training set. As active learning aims to construct an effective training set through iteratively selecting the most informative examples to query labels from annotators, it was introduced into multi-label image classification. Accordingly, multi-label active learning is becoming an important research direction. In this work, we first review existing multi-label active learning algorithms for image classification. These algorithms can be categorized into two top groups from two aspects respectively: sampling and annotation. The most important component of multi-label active learning is to design an effective sampling strategy that actively selects the examples with the highest informativeness from an unlabeled data pool, according to various information measures. Thus, different informativeness measures are emphasized in this survey. Furthermore, this work also makes a deep investigation on existing challenging issues and future promises in multi-label active learning with a focus on four core aspects: example dimension, label dimension, annotation, and application extension.

摘要

图像分类是图像理解中的一项关键任务,多标签图像分类近年来已成为一个热门话题。然而,多标签图像分类的成功与训练集的构建方式密切相关。由于主动学习旨在通过迭代选择最具信息量的示例向标注者查询标签来构建有效的训练集,因此它被引入到多标签图像分类中。相应地,多标签主动学习正成为一个重要的研究方向。在这项工作中,我们首先回顾了现有的用于图像分类的多标签主动学习算法。这些算法可以分别从两个方面分为两大类:采样和标注。多标签主动学习最重要的组成部分是设计一种有效的采样策略,根据各种信息度量从未标记的数据池中主动选择信息量最高的示例。因此,本综述强调了不同的信息量度量。此外,这项工作还对多标签主动学习中现有的具有挑战性的问题和未来前景进行了深入研究,重点关注四个核心方面:示例维度、标签维度、标注和应用扩展。

相似文献

1
Multi-Label Active Learning Algorithms for Image Classification: Overview and Future Promise.
ACM Comput Surv. 2020 Jun;53(2). doi: 10.1145/3379504. Epub 2020 Mar 13.
2
Active Learning by Querying Informative and Representative Examples.
IEEE Trans Pattern Anal Mach Intell. 2014 Oct;36(10):1936-49. doi: 10.1109/TPAMI.2014.2307881.
3
Multilabel image classification via high-order label correlation driven active learning.
IEEE Trans Image Process. 2014 Mar;23(3):1430-41. doi: 10.1109/TIP.2014.2302675.
4
M-VAAL: Multimodal Variational Adversarial Active Learning for Downstream Medical Image Analysis Tasks.
Med Image Underst Anal. 2024;14122:48-63. doi: 10.1007/978-3-031-48593-0_4. Epub 2023 Dec 2.
5
An Adaptive Low-Rank Modeling-Based Active Learning Method for Medical Image Annotation.
Ing Rech Biomed. 2021 Oct;42(5):334-344. doi: 10.1016/j.irbm.2020.06.001. Epub 2020 Jun 9.
7
A meta-framework for multi-label active learning based on deep reinforcement learning.
Neural Netw. 2023 May;162:258-270. doi: 10.1016/j.neunet.2023.02.045. Epub 2023 Mar 7.
8
Triplet attention and dual-pool contrastive learning for clinic-driven multi-label medical image classification.
Med Image Anal. 2023 May;86:102772. doi: 10.1016/j.media.2023.102772. Epub 2023 Feb 16.
9
Causal multi-label learning for image classification.
Neural Netw. 2023 Oct;167:626-637. doi: 10.1016/j.neunet.2023.08.052. Epub 2023 Sep 9.
10
Semi-supervised multi-label classification using an extended graph-based manifold regularization.
Complex Intell Systems. 2022;8(2):1561-1577. doi: 10.1007/s40747-021-00611-7. Epub 2022 Jan 4.

引用本文的文献

2
Enhanced uncertainty sampling with category information for improved active learning.
PLoS One. 2025 Jul 7;20(7):e0327694. doi: 10.1371/journal.pone.0327694. eCollection 2025.
3
OMAL: A Multi-Label Active Learning Approach from Data Streams.
Entropy (Basel). 2025 Mar 29;27(4):363. doi: 10.3390/e27040363.
4
Multi-classification of national fitness test grades based on statistical analysis and machine learning.
PLoS One. 2023 Dec 22;18(12):e0295674. doi: 10.1371/journal.pone.0295674. eCollection 2023.
5
Image dataset for benchmarking automated fish detection and classification algorithms.
Sci Data. 2023 Jan 3;10(1):5. doi: 10.1038/s41597-022-01906-1.
6
An adaptive decision-making system supported on user preference predictions for human-robot interactive communication.
User Model User-adapt Interact. 2023;33(2):359-403. doi: 10.1007/s11257-022-09321-2. Epub 2022 Apr 9.

本文引用的文献

1
Treatment Outcome Prediction for Cancer Patients based on Radiomics and Belief Function Theory.
IEEE Trans Radiat Plasma Med Sci. 2019 Mar;3(2):216-224. doi: 10.1109/TRPMS.2018.2872406. Epub 2018 Sep 27.
2
Inter-rater agreement in glioma segmentations on longitudinal MRI.
Neuroimage Clin. 2019;22:101727. doi: 10.1016/j.nicl.2019.101727. Epub 2019 Feb 22.
3
Crowdsourced Label Aggregation Using Bilayer Collaborative Clustering.
IEEE Trans Neural Netw Learn Syst. 2019 Oct;30(10):3172-3185. doi: 10.1109/TNNLS.2018.2890148. Epub 2019 Jan 25.
4
Radiogenomics.
Med Phys. 2018 Nov;45(11):e1111-e1122. doi: 10.1002/mp.13064.
5
A survey on deep learning in medical image analysis.
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.
6
Intra-rater variability in low-grade glioma segmentation.
J Neurooncol. 2017 Jan;131(2):393-402. doi: 10.1007/s11060-016-2312-9. Epub 2016 Nov 11.
7
Structural Minimax Probability Machine.
IEEE Trans Neural Netw Learn Syst. 2017 Jul;28(7):1646-1656. doi: 10.1109/TNNLS.2016.2544779. Epub 2016 Apr 14.
8
A Robust Regularization Path Algorithm for $\nu $ -Support Vector Classification.
IEEE Trans Neural Netw Learn Syst. 2017 May;28(5):1241-1248. doi: 10.1109/TNNLS.2016.2527796. Epub 2016 Feb 24.
9
Radiomics: Images Are More than Pictures, They Are Data.
Radiology. 2016 Feb;278(2):563-77. doi: 10.1148/radiol.2015151169. Epub 2015 Nov 18.
10
Active Learning by Querying Informative and Representative Examples.
IEEE Trans Pattern Anal Mach Intell. 2014 Oct;36(10):1936-49. doi: 10.1109/TPAMI.2014.2307881.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验