Suppr超能文献

基于脑电图的 ADHD 诊断决策支持算法。

Decision support algorithm for diagnosis of ADHD using electroencephalograms.

机构信息

Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea.

出版信息

J Med Syst. 2012 Aug;36(4):2675-88. doi: 10.1007/s10916-011-9742-x. Epub 2011 Jun 15.

Abstract

Attention deficit hyperactivity disorder is a complex brain disorder which is usually difficult to diagnose. As a result many literature reports about the increasing rate of misdiagnosis of ADHD disorder with other types of brain disorder. There is also a risk of normal children to be associated with ADHD if practical diagnostic criteria are not supported. To this end we propose a decision support system in diagnosing of ADHD disorder through brain electroencephalographic signals. Subjects of 10 children participated in this study, 7 of them were diagnosed with ADHD disorder and remaining 3 children are normal group. Our main goal of this sthudy is to present a supporting diagnostic tool that uses signal processing for feature selection and machine learning algorithms for diagnosis.Particularly, for a feature selection we propose information theoretic which is based on entropy and mutual information measure. We propose a maximal discrepancy criterion for selecting distinct (most distinguishing) features of two groups as well as a semi-supervised formulation for efficiently updating the training set. Further, support vector machine classifier trained and tested for identification of robust marker of EEG patterns for accurate diagnosis of ADHD group. We demonstrate that the applicability of the proposed approach provides higher accuracy in diagnostic process of ADHD disorder than the few currently available methods.

摘要

注意缺陷多动障碍是一种复杂的大脑紊乱,通常很难诊断。因此,许多文献报道了 ADHD 障碍与其他类型的大脑紊乱之间误诊率的增加。如果没有实用的诊断标准,也存在将正常儿童误诊为 ADHD 的风险。为此,我们提出了一种通过脑电信号诊断 ADHD 障碍的决策支持系统。10 名儿童参与了这项研究,其中 7 名被诊断为 ADHD 障碍,其余 3 名儿童为正常组。我们的主要目标是提出一种支持性的诊断工具,该工具使用信号处理进行特征选择和机器学习算法进行诊断。特别是,对于特征选择,我们提出了基于熵和互信息度量的信息论。我们提出了一种最大差异准则,用于选择两组之间的独特(最具区分性)特征,以及一种半监督公式,用于有效地更新训练集。此外,还训练和测试了支持向量机分类器,以识别 EEG 模式的稳健标记,从而实现 ADHD 组的准确诊断。我们证明,与目前少数几种可用方法相比,所提出方法的适用性在 ADHD 障碍的诊断过程中提供了更高的准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验