Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
J Phys Chem A. 2011 Jul 21;115(28):8055-63. doi: 10.1021/jp202781g. Epub 2011 Jun 28.
The oriented CO (a (3)Π, v' = 0, Ω = 1 and 2) beam has been prepared by using an electric hexapole and applied to the energy transfer reaction of CO (a (3)Π, v' = 0, Ω = 1 and 2) + NO (X (2)Π) → NO (A (2)Σ(+), B (2)Π) + CO (X (1)Σ(+)). The emission spectra of NO (A (2)Σ(+), B(2)Π) have been measured at three orientation configurations (C-end, O-end, random). The shape of the emission spectra (and/or the internal excitation of products) turns out to be insensitive to the molecular orientation. The vibrational distributions of NO (A (2)Σ(+), v' = 0-2) and NO (B (2)Π, v' = 0-2) are determined to be N(v'=0):N(v'=1):N(v'=2) = 1:0.40 ± 0.05:0.10 ± 0.05 and N(v'=0):N(v'=1):N(v'= 2) = 1:0.6 ± 0.1:0.7 ± 0.1, respectively, and the branching ratio γ/β [=NO (A (2)Σ(+))/NO (B (2)Π)] is estimated to be γ/β ∼ 0.3 ± 0.1 by means of spectral simulation. These vibrational distributions of NO (A, B) can be essentially attributed to the product-pair correlations between CO (X, v″) and NO (A (2)Σ(+), v' = 0-2), NO (B (2)Π, v' = 0-2) due to energetic restriction under the vibrational distribution of CO (X, v″) produced from the vertical transition of CO (a (3)Π, v' = 0) → CO (X, v″) in the course of energy transfer. The steric opacity function has been determined at two wavelength regions: 220 < λ < 290 nm [NO (A → X) is dominant]; 320 < λ < 400 nm [NO (B → X) is dominant]. For both channels NO (A (2)Σ(+), B(2)Π), a significant CO (a (3)Π) alignment effect is recognized; the largest reactivity at the sideways direction with the small reactivity at the molecular axis direction is observed. These CO (a (3)Π) alignment effects can be essentially attributed to the steric asymmetry on two sets of molecular orbital overlap, [CO (2π) + NO (6σ (2π))] and [CO (5σ) + NO (1π (2π))]. All experimental observations support the electron exchange mechanism that is operative through the formation of a weakly bound complex OCNO.
已通过使用电六极子来制备定向的 CO(a(3)Π,v'=0,Ω=1 和 2)束,并将其应用于 CO(a(3)Π,v'=0,Ω=1 和 2)+NO(X(2)Π)→NO(A(2)Σ(+),B(2)Π)+CO(X(1)Σ(+))的能量转移反应中。在三个取向构型(C 端、O 端、随机)下测量了 NO(A(2)Σ(+),B(2)Π)的发射光谱。发射光谱的形状(或产物的内部激发)对分子取向不敏感。NO(A(2)Σ(+),v'=0-2)和 NO(B(2)Π,v'=0-2)的振动分布被确定为 N(v'=0):N(v'=1):N(v'=2)=1:0.40±0.05:0.10±0.05 和 N(v'=0):N(v'=1):N(v'=2)=1:0.6±0.1:0.7±0.1,分别通过光谱模拟估计 γ/β[=NO(A(2)Σ(+))/NO(B(2)Π)]为 γ/β≈0.3±0.1。由于在 CO(a(3)Π,v'=0)→CO(X,v″)的垂直跃迁过程中,在 CO(X,v″)的振动分布下产生的 CO(X,v″)的产物对之间存在能量限制,因此这些 NO(A,B)的振动分布主要归因于 CO(X,v″)和 NO(A(2)Σ(+),v'=0-2),NO(B(2)Π,v'=0-2)之间的产物对相关性。已经在两个波长区域确定了立体光学不透明度函数:220<λ<290nm[NO(A→X)占主导地位];320<λ<400nm[NO(B→X)占主导地位]。对于两个通道的 NO(A(2)Σ(+),B(2)Π),都观察到显著的 CO(a(3)Π)取向效应;在侧向方向上的最大反应性,在分子轴方向上的反应性较小。这些 CO(a(3)Π)取向效应主要归因于两套分子轨道重叠的立体不对称性,[CO(2π)+NO(6σ(2π))]和[CO(5σ)+NO(1π(2π))]。所有实验观察结果均支持电子交换机制,该机制通过形成弱结合复合物 OCNO 起作用。