Division of Metabolic and Cardiovascular Science, San Raffaele Scientific Institute, Milan, Italy.
Physiol Genomics. 2011 Aug 24;43(16):965-73. doi: 10.1152/physiolgenomics.00040.2010. Epub 2011 Jun 14.
Physical exercise induces adaptive changes leading to a muscle phenotype with enhanced performance. We first investigated whether genetic polymorphisms altering enzymes involved in DNA methylation, probably responsible of DNA methylation deficiency, are present in athletes' DNA. We determined the polymorphic variants C667T/A1298C of 5,10-methylenetetrahydrofolate reductase (MTHFR), A2756G of methionine synthase (MTR), A66G of methionine synthase reductase (MTRR), G742A of betaine:homocysteine methyltransferase (BHMT), and 68-bp ins of cystathionine β-synthase (CBS) genes in 77 athletes and 54 control subjects. The frequency of MTHFR (AC), MTR (AG), and MTRR (AG) heterozygous genotypes was found statistically different in the athletes compared with the control group (P=0.0001, P=0.018, and P=0.0001), suggesting a reduced DNA methylating capacity. We therefore assessed whether DNA hypomethylation might increase the expression of myogenic proteins expressed during early (Myf-5 and MyoD), intermediate (Myf-6), and late-phase (MHC) of myogenesis in a cellular model of hypomethylated or unhypomethylated C2C12 myoblasts. Myogenic proteins are largely induced in hypomethylated cells [fold change (FC)=Myf-5: 1.21, 1.35; MyoD: 0.9, 1.47; Myf-6: 1.39, 1.66; MHC: 1.35, 3.10 in GMA, DMA, respectively] compared with the control groups (FC=Myf-5: 1.0, 1.38; MyoD: 1.0, 1.14; Myf-6: 1.0, 1.44; MHC: 1.0, 2.20 in GM, DM, respectively). Diameters and length of hypomethylated myotubes were greater then their respective controls. Our findings suggest that DNA hypomethylation due to lesser efficiency of polymorphic MTHFR, MS, and MSR enzymes induces the activation of factors determining proliferation and differentiation of myoblasts promoting muscle growth and increase of muscle mass.
体育锻炼会引起适应性变化,导致肌肉表型增强,性能提高。我们首先研究了改变 DNA 甲基化相关酶的基因多态性是否存在于运动员的 DNA 中,这些酶可能导致 DNA 甲基化不足。我们确定了 5,10-亚甲基四氢叶酸还原酶 (MTHFR) 的 C667T/A1298C、蛋氨酸合成酶 (MTR) 的 A2756G、蛋氨酸合成酶还原酶 (MTRR) 的 A66G、甜菜碱:同型半胱氨酸甲基转移酶 (BHMT) 的 G742A 和胱硫醚 β-合酶 (CBS) 的 68bp 插入多态性变体,在 77 名运动员和 54 名对照组中。与对照组相比,运动员中 MTHFR(AC)、MTR(AG)和 MTRR(AG)杂合基因型的频率存在统计学差异(P=0.0001,P=0.018,P=0.0001),表明 DNA 甲基化能力降低。因此,我们评估了 DNA 低甲基化是否会增加早期(Myf-5 和 MyoD)、中期(Myf-6)和晚期(MHC)成肌分化过程中表达的肌原蛋白的表达,在低甲基化或未低甲基化的 C2C12 成肌细胞的细胞模型中。低甲基化细胞中肌原蛋白大量诱导[折叠变化(FC)=Myf-5:1.21、1.35;MyoD:0.9、1.47;Myf-6:1.39、1.66;MHC:1.35、3.10 在 GMA、DMA 中分别]与对照组相比(FC=Myf-5:1.0、1.38;MyoD:1.0、1.14;Myf-6:1.0、1.44;MHC:1.0、2.20 在 GM、DM 中分别)。低甲基化肌管的直径和长度大于各自的对照。我们的发现表明,由于多态性 MTHFR、MS 和 MSR 酶效率较低导致的 DNA 低甲基化会诱导决定成肌细胞增殖和分化的因子的激活,从而促进肌肉生长和肌肉质量的增加。