Translational Cancer Research Group, School of Medical and Molecular Biosciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia.
PLoS One. 2011;6(6):e20623. doi: 10.1371/journal.pone.0020623. Epub 2011 Jun 3.
Endocrine resistance is a major problem with anti-estrogen treatments and how to overcome resistance is a major concern in the clinic. Reliable measurement of cell viability, proliferation, growth inhibition and death is important in screening for drug treatment efficacy in vitro. This report describes and compares commonly used proliferation assays for induced estrogen-responsive MCF-7 breast cancer cell cycle arrest including: determination of cell number by direct counting of viable cells; or fluorescence SYBR®Green (SYBR) DNA labeling; determination of mitochondrial metabolic activity by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay; assessment of newly synthesized DNA using 5-ethynyl-2'-deoxyuridine (EdU) nucleoside analog binding and Alexa Fluor® azide visualization by fluorescence microscopy; cell-cycle phase measurement by flow cytometry. Treatment of MCF-7 cells with ICI 182780 (Faslodex), FTY720, serum deprivation or induction of the tumor suppressor p14ARF showed inhibition of cell proliferation determined by the Trypan Blue exclusion assay and SYBR DNA labeling assay. In contrast, the effects of treatment with ICI 182780 or p14ARF-induction were not confirmed using the MTS assay. Cell cycle inhibition by ICI 182780 and p14ARF-induction was further confirmed by flow cytometric analysis and EdU-DNA incorporation. To explore this discrepancy further, we showed that ICI 182780 and p14ARF-induction increased MCF-7 cell mitochondrial activity by MTS assay in individual cells compared to control cells thereby providing a misleading proliferation readout. Interrogation of p14ARF-induction on MCF-7 metabolic activity using TMRE assays and high content image analysis showed that increased mitochondrial activity was concomitant with increased mitochondrial biomass with no loss of mitochondrial membrane potential, or cell death. We conclude that, whilst p14ARF and ICI 182780 stop cell cycle progression, the cells are still viable and potential treatments utilizing these pathways may contribute to drug resistant cells. These experiments demonstrate how the combined measurement of metabolic activity and DNA labeling provides a more reliable interpretation of cancer cell response to treatment regimens.
内分泌抵抗是抗雌激素治疗的一个主要问题,如何克服这种抵抗是临床关注的一个主要问题。可靠地测量细胞活力、增殖、生长抑制和死亡对于筛选体外药物治疗效果非常重要。本报告描述并比较了常用于诱导雌激素反应性 MCF-7 乳腺癌细胞周期阻滞的增殖检测方法,包括:通过直接计数活细胞来确定细胞数量;或通过荧光 SYBR®Green(SYBR)DNA 标记;通过 3-(4,5-二甲基噻唑-2-基)-5-(3-羧甲氧基苯基)-2-(4-磺基苯基)-2H-四唑(MTS)测定法测定线粒体代谢活性;使用 5-乙炔基-2'-脱氧尿苷(EdU)核苷类似物结合并通过荧光显微镜可视化 Alexa Fluor®叠氮化物来评估新合成的 DNA;通过流式细胞术测量细胞周期阶段。用 ICI 182780(Faslodex)、FTY720、血清剥夺或诱导肿瘤抑制因子 p14ARF 处理 MCF-7 细胞,通过台盼蓝排除试验和 SYBR DNA 标记试验可抑制细胞增殖。相比之下,用 MTS 试验未证实用 ICI 182780 或 p14ARF 诱导处理的效果。ICI 182780 和 p14ARF 诱导的细胞周期抑制通过流式细胞术分析和 EdU-DNA 掺入进一步得到证实。为了进一步探讨这种差异,我们发现与对照细胞相比,ICI 182780 和 p14ARF 诱导在单个细胞中增加了 MCF-7 细胞的 MTS 试验线粒体活性,从而提供了一种误导性的增殖读数。使用 TMRE 测定和高内涵图像分析对 MCF-7 代谢活性进行 p14ARF 诱导检测显示,线粒体活性的增加伴随着线粒体生物量的增加,而没有线粒体膜电位的丧失或细胞死亡。我们得出结论,虽然 p14ARF 和 ICI 182780 阻止细胞周期进程,但细胞仍然存活,利用这些途径的潜在治疗方法可能会导致耐药细胞。这些实验表明,代谢活性和 DNA 标记的联合测量如何为癌症细胞对治疗方案的反应提供更可靠的解释。