Suppr超能文献

控制聚集和释放速度以改善胰岛素制剂:全长胰岛素淀粉样寡聚物模型的分子动力学研究。

Controlling the aggregation and rate of release in order to improve insulin formulation: molecular dynamics study of full-length insulin amyloid oligomer models.

机构信息

NanoScience Technology Center and Department of Chemistry, University of Central Florida, Orlando, FL 32826, USA.

出版信息

J Mol Model. 2012 Mar;18(3):1129-42. doi: 10.1007/s00894-011-1123-3. Epub 2011 Jun 15.

Abstract

Insulin is a hormone that regulates the physiological glucose level in human blood. Insulin injections are used to treat diabetic patients. The amyloid aggregation of insulin may cause problems during the production, storage, and delivery of insulin formulations. Several modifications to the C-terminus of the B chain have been suggested in order to improve the insulin formulation. The central fragments of the A and B chains (LYQLENY and LVEALYL) have recently been identified as β-sheet-forming regions, and their microcrystalline structures have been used to build a high-resolution amyloid fibril model of insulin. Here we report on a molecular dynamics (MD) study of single-layer oligomers of the full-length insulin which aimed to identify the structural elements that are important for amyloid stability, and to suggest single glycine mutants in the β-sheet region that may improve the formulation. Structural stability, aggregation behavior and the thermodynamics of association were studied for the wild-type and mutant aggregates. A comparison of the oligomers of different sizes revealed that adding strands enhances the internal stability of the wild-type aggregates. We call this "dynamic cooperativity". The secondary structure content and clustering analysis of the MD trajectories show that the largest aggregates retain the fibril conformation, while the monomers and dimers lose their conformations. The degree of structural similarity between the oligomers in the simulation and the fibril conformation is proposed as a possible explanation for the experimentally observed shortening of the nucleation lag phase of insulin with oligomer seeding. Decomposing the free energy into electrostatic, van der Waals and solvation components demonstrated that electrostatic interactions contribute unfavorably to the binding, while the van der Waals and especially solvation effects are favorable for it. A per-atom decomposition allowed us to identify the residues that contribute most to the binding free energy. Residues in the β-sheet regions of chains A and B were found to be the key residues as they provided the largest favorable contributions to single-layer association. The positive ∆∆G (mut) values of 37.3 to 1.4 kcal mol(-1) of the mutants in the β-sheet region indicate that they have a lower tendency to aggregate than the wild type. The information obtained by identifying the parts of insulin molecules that are crucial to aggregate formation and stability can be used to design new analogs that can better control the blood glucose level. The results of our simulation may help in the rational design of new insulin analogs with a decreased propensity for self-association, thus avoiding injection amyloidosis. They may also be used to design new fast-acting and delayed-release insulin formulations.

摘要

胰岛素是一种调节人体血液中生理葡萄糖水平的激素。胰岛素注射用于治疗糖尿病患者。胰岛素的淀粉样聚集可能会在胰岛素制剂的生产、储存和输送过程中引起问题。为了改善胰岛素制剂,已经提出了对 B 链 C 末端的几种修饰。A 链和 B 链的中心片段(LYQLENY 和 LVEALYL)最近被确定为β-折叠形成区域,并且它们的微晶结构已被用于构建胰岛素高分辨率淀粉样纤维模型。在这里,我们报告了全长胰岛素单层低聚物的分子动力学(MD)研究,旨在确定对淀粉样稳定性重要的结构元素,并提出β-折叠区域中的单个甘氨酸突变体,以改善制剂。研究了野生型和突变体聚集体的结构稳定性、聚集行为和热力学缔合。对不同大小的低聚物的比较表明,添加链可增强野生型聚集体的内部稳定性。我们称之为“动态协同作用”。MD 轨迹的二级结构含量和聚类分析表明,最大的聚集体保留了纤维构象,而单体和二聚体失去了它们的构象。模拟中低聚物与纤维构象之间的结构相似性程度被提出作为实验观察到的胰岛素寡聚体引发的成核滞后阶段缩短的可能解释。将自由能分解为静电、范德华和溶剂化分量表明,静电相互作用不利于结合,而范德华和特别是溶剂化作用有利于结合。原子分解允许我们识别对结合自由能贡献最大的残基。发现 A 链和 B 链β-折叠区域的残基是关键残基,因为它们对单层缔合提供了最大的有利贡献。β-折叠区域突变体的正 ∆∆G(mut)值为 37.3 至 1.4 kcal mol(-1),表明它们比野生型的聚集倾向更低。识别对胰岛素分子聚集形成和稳定性至关重要的部分的信息可用于设计更好地控制血糖水平的新型类似物。我们模拟的结果可能有助于设计具有降低自缔合倾向的新型胰岛素类似物,从而避免注射淀粉样变性。它们还可用于设计新的速效和延迟释放胰岛素制剂。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验