Suppr超能文献

使用静脉靶向速度选择自旋标记技术进行氧提取和组织消耗的定量成像(QUIXOTIC)。

QUantitative Imaging of eXtraction of oxygen and TIssue consumption (QUIXOTIC) using venular-targeted velocity-selective spin labeling.

机构信息

Department of Radiology, Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.

出版信息

Magn Reson Med. 2011 Dec;66(6):1550-62. doi: 10.1002/mrm.22946. Epub 2011 Jun 14.

Abstract

While oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO(2)) are fundamental parameters of brain health and function, a robust MRI-based mapping of OEF and CMRO(2) amenable to functional MRI (fMRI) has not been established. To address this issue, a novel method called QUantitative Imaging of eXtraction of Oxygen and TIssue Consumption, or QUIXOTIC, is introduced. The key innovation in QUIXOTIC is the use of velocity-selective spin labeling to isolate MR signal exclusively from postcapillary venular blood on a voxel-by-voxel basis. Measuring the T(2) of this venular-targeted blood allows calibration to venular oxygen saturation (Y(v)) via theoretical and experimental T(2) versus blood oxygen saturation relationships. Y(v) is converted to OEF, and baseline CMRO(2) is subsequently estimated from OEF and additional cerebral blood flow and hematocrit measurements. Theory behind the QUIXOTIC technique is presented, and implications of cutoff velocity (V(CUTOFF)) and outflow time parameters are discussed. Cortical gray matter values obtained with QUIXOTIC in 10 healthy volunteers are Y(v) = 0.73 ± 0.02, OEF = 0.26 ± 0.02, and CMRO(2) = 125 ± 15 μmol/100 g min. Results are compared to global measures obtained with the T(2) relaxation under spin tagging (TRUST) technique. The preliminary data presented suggest that QUIXOTIC will be useful for mapping Y(v), OEF, and CMRO(2), in both clinical and functional MRI settings.

摘要

氧摄取分数(OEF)和脑氧代谢率(CMRO2)是大脑健康和功能的基本参数,但尚未建立一种稳健的、基于 MRI 的 OEF 和 CMRO2映射方法,使其适用于功能磁共振成像(fMRI)。为了解决这个问题,引入了一种称为定量血氧提取和组织耗氧量成像(QUIXOTIC)的新方法。QUIXOTIC 的关键创新在于使用速度选择自旋标记,在体素基础上从毛细血管后微静脉血中分离出唯一的 MR 信号。测量这种靶向微静脉血液的 T2值,通过理论和实验 T2与血氧饱和度的关系,对微静脉氧饱和度(Yv)进行校准。Yv被转换为 OEF,然后根据 OEF 以及额外的脑血流和红细胞压积测量值来估算基线 CMRO2。本文介绍了 QUIXOTIC 技术背后的理论,并讨论了截止速度(VCUTOFF)和流出时间参数的影响。10 名健康志愿者的皮质灰质值用 QUIXOTIC 获得,Yv=0.73±0.02,OEF=0.26±0.02,CMRO2=125±15 μmol/100 g min。结果与自旋标记下 T2弛豫(TRUST)技术获得的全局测量值进行了比较。初步数据表明,QUIXOTIC 将有助于在临床和功能磁共振成像环境中映射 Yv、OEF 和 CMRO2

相似文献

引用本文的文献

3
Recent Advances in MR Imaging-based Quantification of Brain Oxygen Metabolism.基于磁共振成像的脑氧代谢定量研究的最新进展。
Magn Reson Med Sci. 2024 Jul 1;23(3):377-403. doi: 10.2463/mrms.rev.2024-0028. Epub 2024 Jun 13.
7
Cerebral oxygen metabolism from MRI susceptibility.MRI 对脑氧代谢的研究
Neuroimage. 2023 Aug 1;276:120189. doi: 10.1016/j.neuroimage.2023.120189. Epub 2023 May 23.
10
QSM Throughout the Body.全身定量磁化率(QSM)
J Magn Reson Imaging. 2023 Jun;57(6):1621-1640. doi: 10.1002/jmri.28624. Epub 2023 Feb 7.

本文引用的文献

5
Perfusion tensor imaging.灌注张量成像
Magn Reson Med. 2008 Dec;60(6):1284-91. doi: 10.1002/mrm.21806.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验