Department of Chemistry, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235-1822, USA.
Chem Res Toxicol. 2011 Jul 18;24(7):1071-9. doi: 10.1021/tx200089v. Epub 2011 Jun 16.
The oligodeoxynucleotide 5'-CGCATXGAATCC-3'·5'-GGATTCAATGCG-3' containing 1,N(2)-etheno-2'-deoxyguanosine (1,N(2)-εdG) opposite deoxyadenosine (named the 1,N(2)-εdG·dA duplex) models the mismatched adenine product associated with error-prone bypass of 1,N(2)-εdG by the Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) and by Escherichia coli polymerases pol I exo(-) and pol II exo(-). At pH 5.2, the T(m) of this duplex was increased by 3 °C as compared to the duplex in which the 1,N(2)-εdG lesion is opposite dC, and it was increased by 2 °C compared to the duplex in which guanine is opposite dA (the dG·dA duplex). A strong NOE between the 1,N(2)-εdG imidazole proton and the anomeric proton of the attached deoxyribose, accompanied by strong NOEs to the minor groove A(20) H2 proton and the mismatched A(19) H2 proton from the complementary strand, establish that 1,N(2)-εdG rotated about the glycosyl bond from the anti to the syn conformation. The etheno moiety was placed into the major groove. This resulted in NOEs between the etheno protons and T(5) CH(3). A strong NOE between A(20) H2 and A(19) H2 protons established that A(19), opposite to 1,N(2)-εdG, adopted the anti conformation and was directed toward the helix. The downfield shifts of the A(19) amino protons suggested protonation of dA. Thus, the protonated 1,N(2)-εdG·dA base pair was stabilized by hydrogen bonds between 1,N(2)-εdG N1 and A(19) N1H(+) and between 1,N(2)-εdG O(9) and A(19)N(6)H. The broad imino proton resonances for the 5'- and 3'-flanking bases suggested that both neighboring base pairs were perturbed. The increased stability of the 1,N(2)-εdG·dA base pair, compared to that of the 1,N(2)-εdG·dC base pair, correlated with the mismatch adenine product observed during the bypass of 1,N(2)-εdG by the Dpo4 polymerase, suggesting that stabilization of this mismatch may be significant with regard to the biological processing of 1,N(2)-εdG.
寡脱氧核苷酸 5'-CGCATXGAATCC-3'·5'-GGATTCAATGCG-3' 包含 1,N(2)- 乙撑-2'-脱氧鸟苷(1,N(2)-εdG)与脱氧腺苷(命名为 1,N(2)-εdG·dA 双链体)相对,模拟与 Sulfolobus solfataricus P2 DNA 聚合酶 IV(Dpo4)和大肠杆菌聚合酶 pol I exo(-)和 pol II exo(-) 错误倾向的 1,N(2)-εdG 旁路相关的错配腺嘌呤产物。在 pH 5.2 下,与 1,N(2)-εdG 损伤与 dC 相对的双链体相比,该双链体的 T(m) 升高了 3°C,与鸟嘌呤与 dA 相对的双链体(dG·dA 双链体)相比,升高了 2°C。1,N(2)-εdG 咪唑质子与连接的脱氧核糖的糖苷质子之间的强 NOE,伴随着来自互补链的小沟 A(20) H2 质子和错配 A(19) H2 质子的强 NOE,证实 1,N(2)-εdG 绕糖苷键从反式构象旋转到顺式构象。乙撑部分被放置在大沟中。这导致乙撑质子与 T(5) CH(3) 之间的 NOE。A(20) H2 和 A(19) H2 质子之间的强 NOE 证实了与 1,N(2)-εdG 相对的 A(19) 采用反式构象并指向螺旋。A(19) 氨基质子的场位移表明 dA 质子化。因此,质子化的 1,N(2)-εdG·dA 碱基对通过 1,N(2)-εdG N1 和 A(19) N1H(+) 以及 1,N(2)-εdG O(9) 和 A(19)N(6)H 之间的氢键稳定。5'和 3'侧翼碱基的宽亚氨基质子共振表明两个相邻的碱基对都受到了干扰。与 1,N(2)-εdG·dC 碱基对相比,1,N(2)-εdG·dA 碱基对的稳定性增加,与 Dpo4 聚合酶旁路过程中观察到的错配腺嘌呤产物相关,表明这种错配的稳定可能与 1,N(2)-εdG 的生物处理有关。