Department of Chemistry, Vanderbilt Institute of Chemical Biology, Center in MolecularToxicology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, USA.
Biochemistry. 2010 Mar 30;49(12):2615-26. doi: 10.1021/bi901516d.
The structure of the 1,N(2)-ethenodeoxyguanosine lesion (1,N(2)-epsilondG) has been characterized in 5'-d(CGCATXGAATCC)-3'.5'-d(GGATTCATGCG)-3' (X = 1,N(2)-epsilondG), in which there is no dC opposite the lesion. This duplex (named the 1-BD duplex) models the product of translesion bypass of 1,N(2)-epsilondG by Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) [Zang, H., Goodenough, A. K., Choi, J. Y., Irimia, A., Loukachevitch, L. V., Kozekov, I. D., Angel, K. C., Rizzo, C. J., Egli, M., and Guengerich, F. P. (2005) J. Biol. Chem. 280, 29750-29764], leading to a one-base deletion. The T(m) of this duplex is 6 degrees C higher than that of the duplex in which dC is present opposite the 1,N(2)-epsilondG lesion and 8 degrees C higher than that of the unmodified 1-BD duplex. Analysis of NOEs between the 1,N(2)-epsilondG imidazole and deoxyribose H1' protons and between the 1,N(2)-epsilondG etheno H6 and H7 protons and DNA protons establishes that 1,N(2)-epsilondG adopts the anti conformation about the glycosyl bond and that the etheno moiety is accommodated within the helix. The resonances of the 1,N(2)-epsilondG H6 and H7 etheno protons shift upfield relative to the monomer 1,N(2)-epsilondG, attributed to ring current shielding, consistent with their intrahelical location. NMR data reveal that Watson-Crick base pairing is maintained at both the 5' and 3' neighbor base pairs. The structure of the 1-BD duplex has been refined using molecular dynamics calculations restrained by NMR-derived distance and dihedral angle restraints. The increased stability of the 1,N(2)-epsilondG lesion in the absence of the complementary dC correlates with the one-base deletion extension product observed during the bypass of the 1,N(2)-epsilondG lesion by the Dpo4 polymerase, suggesting that stabilization of this bulged intermediate may be significant with regard to the biological processing of the lesion.
1,N(2)-乙烯脱氧鸟苷损伤(1,N(2)-εdG)的结构已在 5'-d(CGCATXGAATCC)-3'.5'-d(GGATTCATGCG)-3'(X = 1,N(2)-εdG)中得到了描述,其中没有与损伤相对的 dC。这个双链体(命名为 1-BD 双链体)模拟了 Sulfolobus solfataricus P2 DNA 聚合酶 IV(Dpo4)[Zang,H.,Goodenough,A. K.,Choi,J. Y.,Irimia,A.,Loukachevitch,L. V.,Kozekov,I. D.,Angel,K. C.,Rizzo,C. J.,Egli,M.,和 Guengerich,F. P.(2005)J. Biol. Chem. 280,29750-29764]跨损伤通过 1,N(2)-εdG 导致的一个碱基缺失产物。该双链体的 T(m)比在 1,N(2)-εdG 损伤处存在 dC 的双链体高 6°C,比未修饰的 1-BD 双链体高 8°C。对 1,N(2)-εdG 咪唑和脱氧核糖 H1'质子之间以及 1,N(2)-εdG 乙烯基 H6 和 H7 质子与 DNA 质子之间的 NOE 的分析表明,1,N(2)-εdG 采用糖苷键的反式构象,并且乙烯基部分被容纳在螺旋内。1,N(2)-εdG H6 和 H7 乙烯基质子的共振相对于单体 1,N(2)-εdG 向上场位移,归因于环电流屏蔽,与它们在螺旋内的位置一致。NMR 数据表明,在 5'和 3'相邻碱基对处都保持 Watson-Crick 碱基配对。使用分子动力学计算通过 NMR 衍生的距离和二面角约束来 refinement 1-BD 双链体的结构。在没有互补 dC 的情况下,1,N(2)-εdG 损伤的稳定性增加与 Dpo4 聚合酶跨损伤通过时观察到的一个碱基缺失延伸产物相关,这表明这种凸起中间体的稳定可能与损伤的生物处理有关。