Suppr超能文献

用于生物电极界面的电活性 SWNT/PEGDA 杂化水凝胶涂层。

Electroactive SWNT/PEGDA hybrid hydrogel coating for bio-electrode interface.

机构信息

School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China.

出版信息

Colloids Surf B Biointerfaces. 2011 Oct 15;87(2):273-9. doi: 10.1016/j.colsurfb.2011.05.028. Epub 2011 May 23.

Abstract

Electric interface between neural tissue and electrode plays a significant role in the development of implanted devices for continuous monitoring and functional stimulation of central nervous system in terms of electroactivity, biocompatibility and long-term stability. To engineer an interface that possesses these merits, a polymeric hydrogel based on poly(ethylene glycol) diacrylate (PEGDA) and single-walled carbon nanotubes (SWNTs) were employed to fabricate a hybrid hydrogel via covalent anchoring strategy, i.e., self-assembly of cysteamine (Cys) followed by Michael addition between Cys and PEGDA. XPS characterization proves that the Cys molecules are linked to gold surface via the strong S-Au bond and that the PEGDA macromers are covalently bonded to Cys. FTIR spectra indicate the formation of hybrid hydrogel coating during photopolymerization. Electrochemical measurements using cyclic voltammetry (CV) and impedance spectrum clearly show the enhancement of electric properties to the hydrogel by the SWNTs. The charge transfer of the hybrid hydrogel-based electrode is quasi-reversible and charge transfer resistance decreases to the tenth of that of the pure hydrogel due to electron hopping along the SWNTs. Additionally, this hybrid hydrogel provides a favorable biomimetic microenvironment for cell attachment and growth due to its inherent biocompatibility. Combination of these merits yields hybrid hydrogels that can be good candidates for application to biosensors and biomedical devices. More importantly, the hybrid hydrogel coatings fabricated via the current strategy have good adhesion to the electrode substrate which is highly desired for chronically implantable devices.

摘要

神经组织与电极之间的电界面在用于中枢神经系统连续监测和功能刺激的植入式设备的发展中起着重要作用,其关键性能包括电活性、生物相容性和长期稳定性。为了设计具有这些优点的界面,我们采用基于聚乙二醇二丙烯酸酯(PEGDA)和单壁碳纳米管(SWNTs)的聚合物水凝胶,通过共价附着策略(即半胱氨酸(Cys)的自组装以及 Cys 与 PEGDA 之间的迈克尔加成)来制备混合水凝胶。XPS 表征证明 Cys 分子通过强 S-Au 键与金表面相连,PEGDA 大分子与 Cys 共价键合。FTIR 光谱表明在光聚合过程中形成了混合水凝胶涂层。使用循环伏安法(CV)和阻抗谱进行的电化学测量清楚地表明,SWNTs 增强了水凝胶的电学性能。基于混合水凝胶的电极的电荷转移是准可逆的,并且由于 SWNTs 上的电子跳跃,电荷转移电阻降低到纯水凝胶的十分之一。此外,由于其固有的生物相容性,这种混合水凝胶为细胞附着和生长提供了有利的仿生微环境。这些优点的结合使得混合水凝胶成为生物传感器和生物医学设备应用的良好候选材料。更重要的是,通过当前策略制备的混合水凝胶涂层与电极基底具有良好的附着力,这对于可长期植入的设备是非常需要的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验